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Optimally estimating the sample
mean from the sample size, median,
mid-range, and/or mid-quartile range

Dehui Luo,1 Xiang Wan,2 Jiming Liu2 and Tiejun Tong1

Abstract

The era of big data is coming, and evidence-based medicine is attracting increasing attention to improve decision making

in medical practice via integrating evidence from well designed and conducted clinical research. Meta-analysis is a

statistical technique widely used in evidence-based medicine for analytically combining the findings from independent

clinical trials to provide an overall estimation of a treatment effectiveness. The sample mean and standard deviation are

two commonly used statistics in meta-analysis but some trials use the median, the minimum and maximum values,

or sometimes the first and third quartiles to report the results. Thus, to pool results in a consistent format, researchers

need to transform those information back to the sample mean and standard deviation. In this article, we investigate the

optimal estimation of the sample mean for meta-analysis from both theoretical and empirical perspectives. A major

drawback in the literature is that the sample size, needless to say its importance, is either ignored or used in a stepwise

but somewhat arbitrary manner, e.g. the famous method proposed by Hozo et al. We solve this issue by incorporating

the sample size in a smoothly changing weight in the estimators to reach the optimal estimation. Our proposed

estimators not only improve the existing ones significantly but also share the same virtue of the simplicity. The real

data application indicates that our proposed estimators are capable to serve as ‘‘rules of thumb’’ and will be widely

applied in evidence-based medicine.
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1 Introduction

The concept of evidence-based medicine was introduced in 1992 by Guyatt et al.,1 which was intended to improve
decision making in medical practice and has risen to be regarded as the gold standard for healthcare and medicine.
It integrates findings from several independent studies of the same clinical question and then use
statistical techniques to combine the results together so that proper decisions to cure patients could be made
eventually. Meta-analysis plays a crucial role in evidence-based medicine to help researchers summarize data
comprehensively.2 To statistically combine data from multiple studies, the first step is to determine a summary
measure as well as its corresponding statistics. In most of the studies, the sample mean and standard deviation are
two commonly used statistics in the data analysis. However, instead of directly reporting the sample mean and
standard deviation, the median, the first and third quartiles, the minimum and maximum values are often recorded
in clinical trial studies. As a result, when proceeding meta-analysis, people need to transform these information to
the sample mean and standard deviation in order to conduct further analysis.

To transform the data, Hozo et al.3 used inequalities to establish some estimators for the sample mean and
variance. They were the first to suggest methodology for this estimation problem. Their proposed method is simple
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and has been widely adopted in the scenario where only the sample median, extremum, and sample size are
reported. Recently, Wan et al.4 pointed out that Hozo et al.’s method has some serious drawbacks and,
in particular, is less accurate for the estimation of the sample variance. In view of this, they introduced a
quartile method to improve the sample standard deviation estimation. They have further extended the new
methodology to two other frequently encountered scenarios in reporting clinical trial results. Through
simulation studies, they have demonstrated that their newly proposed methods greatly outperform the existing
methods including Hozo et al.3 and Bland.5

Wan et al.4 had fully discussed and consummated the approaches in estimating the sample standard deviation
under different conditions. For the estimation of the sample mean, they simply followed the estimation methods in
Hozo et al.3 and Bland.5 These existing methods, however, suffer from some major limitations due to the
insufficient use of the information in the sample size. In this article, we propose some new methods by
incorporating the sample size in a smoothly changing weight to reach the optimal estimation of the sample
mean. The proposed methods not only improve the existing estimators significantly but also share the same
virtue of the simplicity. We believe our proposed estimators will serve as ‘‘rules of thumb’’ for the sample
mean estimation in meta-analysis.

2 Sample mean estimation

For the sake of consistency, we follow essentially the same notations as those in Hozo et al.3 and Wan et al.4

Specifically, we let n be the sample size and denote the five-number summary for the data as

a ¼ the minimum value,

q1 ¼ the first quartile,

m ¼ the median,

q3 ¼ the third quartile,

b ¼ themaximum value:

In clinical trial reports, the five-number summary for the data may not be provided in full. We consider the
three scenarios that are most frequently encountered:

S1 ¼ fa,m, b; ng,

S2 ¼ fq1,m, q3; ng,

S3 ¼ fa, q1,m, q3, b; ng

According to Triola,6 we refer to ðb� aÞ as the range, ðaþ bÞ=2 as the mid-range, ðq3 � q1Þ as the interquartile
range, and ðq1 þ q3Þ=2 as the mid-quartile range. As a common practice, the range and the interquartile range are
often used to measure the standard deviation, whereas the mid-range and the mid-quartile range are used to
measure the center (or mean) of the population.

2.1 Existing methods

2.1.1 Hozo et al.’s method for S1 ¼ fa,m,b; ng

Scenario S1 represents the situation where the median, the minimum, the maximum, and the sample size are given
in a study. Hozo et al.3 were the first to address the sample mean estimation problem. By inequalities, they
proposed the following estimator for the sample mean:

�X �
ðaþ 2mþ bÞ=4 n � 25,

m n4 25

�
ð1Þ

Although very easy to implement, we note that the estimator (1) may not be sufficiently accurate as it
incorporates the sample size in a stepwise manner. The sample mean estimation has a sudden change from m
to ðaþ 2mþ bÞ=4 when the sample size reduces to 25. This change might lead to a less precise estimation. For
example, when the sample size is changed from 26 to 25, the estimated sample mean might be a lot different than
the actual one because of the ‘‘jump’’ in the estimator. In contrast, within the respective interval of n> 25 or
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n � 25, the sample mean estimation is independent of the sample size and the information in the sample size is
completely ignored. As a consequence, such an estimate may not be reliable for practical use. This motivates us to
consider an improved estimation of the sample mean by incorporating the sample size in a smoothly changing
manner.

2.1.2 Wan et al.’s method for S2 ¼ fq1,m,q3; ng

Scenario S2 reports the first and third quartiles instead of the minimum and the maximum, together with the
median and the sample size. Other than the sample range, i.e. the difference between the minimum and the
maximum, the interquartile range is usually less sensitive to outliers and hence is also popularly reported in
clinical trial studies. For scenario S2, Wan et al.4 proposed to estimate the sample mean by

�X �
q1 þmþ q3

3
ð2Þ

It is evident that the sample size information is not used in their proposed estimation. We also note that an
equal weight is assigned to each summary statistic in the estimator (2). In particular, the weight for the median is
1/3 in scenario S2 compared with 1/2 in scenario S1. Hence, it would also be of interest to investigate if a smoothly
changing manner is needed for assigning the appropriate weights to the median and the two quartiles with respect
to the sample size.

2.1.3 Bland’s method for S3 ¼ fa,q1,m,q3,b; ng

Scenario S3 is a combination of the scenarios S1 and S2. It assumes that the five-number summary of the data are
all given for further analysis. Following the same idea in Hozo et al.,3 Bland5 proposed the following estimator for
the sample mean:

�X �
aþ 2q1 þ 2mþ 2q3 þ b

8
ð3Þ

Once again, the sample size information is not used in the estimation of the sample mean. The estimator assigns
an equal weight to q1, m, and q3, respectively, and another equal weight to a and b, respectively. Similar to the
other two scenarios, we will investigate if a smoothly changing manner is needed for assigning the appropriate
weights to the five-number summary of the data with respect to the sample size.

2.2 Improved methods

Let X1,X2, . . . ,Xn be a random sample of size n from the normal distribution Nð�, �2Þ, and Xð1Þ � Xð2Þ � � � � � XðnÞ
be the ordered statistics of the sample. For simplicity, we assume that the sample size n ¼ 4Qþ 1 with Q � 1 being
a positive integer. With the above notations, we have a ¼ Xð1Þ, q1 ¼ XðQþ1Þ, m ¼ Xð2Qþ1Þ, q3 ¼ Xð3Qþ1Þ, and
b ¼ XðnÞ ¼ Xð4Qþ1Þ. For convenience, let also Xi ¼ �þ �Zi, or equivalently, XðiÞ ¼ �þ �ZðiÞ for i ¼ 1, . . . , n.
Then, Z1,Z2, . . . ,Zn follows the standard normal distribution N(0, 1), and Zð1Þ � Zð2Þ � � � � � ZðnÞ are the
ordered statistics of the sample fZ1, . . . ,Zng.

2.2.1 Improved estimation of the sample mean in S1 ¼ fa,m,b; ng

Following the discussion in ‘‘Hozo et al.’s method for S1 ¼ fa,m, b; ng’’ section, we propose to estimate the sample
mean by

�XðwÞ ¼ w
aþ b

2

� �
þ ð1� wÞm ð4Þ

where w is the weight assigned to the mid-range ðaþ bÞ=2, and the remaining weight 1� w is assigned to the
median m. The proposed estimator (4) is a weighted average of the mid-range and the median, where both
quantities are the measures of center for the population. In the special case if we take w¼ 1/2 for n � 25 and
w¼ 0 for n> 25, the proposed estimator reduces to the estimator (1) proposed by Hozo et al.3 Such an allocation
of the weight is somewhat arbitrary and can be less reliable.

We consider to solve the issue by incorporating the sample size in a smoothly changing manner. That is, we
consider the weight w ¼ wðnÞ as a function of the sample size. Then from the decision-making point of view,
we define the optimal weight wopt ¼ woptðnÞ to be the weight that minimizes the expected loss function of the
estimator. In this article, we consider the squared loss function Lð �XðwÞ,�Þ ¼ ð �XðwÞ � �Þ2, then accordingly,
the expected loss function is the commonly used mean squared error (MSE) of the estimator. By Theorem 1 in
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Appendix 2, the proposed estimator (4) is an unbiased estimator of the true mean �. Hence, we have
MSEð �XðwÞÞ ¼ ðw2=4ÞVarðaþ bÞ þ ð1� wÞ2VarðmÞ þ wð1� wÞCovðaþ b,mÞ. Note that the MSE function is a
quadratic function of w and has a unique minimum value on ½0, 1�.

To derive the optimal weight, we take the first derivative of MSE with respect to w and set the result equal to
zero. It gives the optimal weight as

woptðnÞ ¼
4VarðmÞ � 2Covðaþ b,mÞ

Varðaþ bÞ þ 4VarðmÞ � 4Covðaþ b,mÞ

Recall that a ¼ �þ �Zð1Þ, b ¼ �þ �ZðnÞ and m ¼ �þ �Zð2Qþ1Þ. Together with the symmetry of the standard
normal distribution, we can represent the optimal weight as

woptðnÞ ¼
KðnÞ

KðnÞ þ 1
ð5Þ

where KðnÞ ¼ 2½EðZ2
ð2Qþ1ÞÞ � EðZð1ÞZð2Qþ1ÞÞ�=½EðZ

2
ð1ÞÞ þ EðZð1ÞZðnÞÞ � 2EðZð1ÞZð2Qþ1ÞÞ�. The derivation of (5) is given

in the proof of Theorem 1 in Appendix 2. It is clear that the optimal weight woptðnÞ is independent of � and �2 and
is only a function of n.

To explore the behavior of the optimal weight, we use the statistical software R to numerically compute the
values of woptðnÞ for n from 5 to 101 and plot them in the top panel of Figure 1. We observe that woptðnÞ decreases
as n increases, in particular, the optimal weight reduces to about 0.1 when n¼ 101. When the sample size is large or
very large, the estimator will assign most of the weight to the median as it provides a more robust estimate for the
measure of center compared with the mid-range. In fact, as mentioned in Triola,6 the mid-range is rarely used in
practice as, from an asymptotic point of view, it lacks efficiency and robustness as an estimator. When the sample
size is small, however, a well-designed combination of the mid-range and the median may provide a better
estimation of the sample mean compared with only using the median. In addition, we note that the optimal
weight woptðnÞ is about 0.25 when n¼ 25. This explains why in a stepwise manner with w¼ 0 and w¼ 0.5 being
the only two options, Hozo et al.3 suggested to take w¼ 0.5 when n � 25 and w¼ 0 when n> 25.

Note that the optimal weight woptðnÞ in (5) may not be readily accessible for practitioners as it involves some
complicated statistical computation. In what follows, we propose an approximation formula for woptðnÞ and then
display the final estimator of the sample mean as an ‘‘rule of thumb’’ for practical use. To approximate K(n),
we consider the simple power function KðnÞ ¼ c1n

c2 . Using the observed true weights in the top panel of Figure 1,
we figure out that the best coefficients are about c1 ¼ 4 and c2 ¼ �0:75. This leads to the approximated optimal
weight as

~woptðnÞ �
4

4þ n0:75
ð6Þ

For comparison, we also display the approximated optimal weights (6) and the weights proposed by Hozo et al.
in Figure 1. It is evident that the approximated optimal weights provide a nearly perfect match to the true optimal
weights, in particular for the sample size ranging from 5 to 101.

Finally, by plugging the approximation formula (6) into the estimator (4), we propose the estimator for
Scenario S1 as

�XðwÞ �
4

4þ n0:75

� �
aþ b

2
þ

n0:75

4þ n0:75

� �
m ð7Þ

The performance of (7) is evaluated in Section 3, together with its numerical comparison with the estimation
method in Hozo et al.3

2.2.2 Improved estimation of the sample mean in S2 ¼ fq1,m,q3; ng

For scenario S2, we propose the new estimator for the sample mean as

�XðwÞ ¼ w
q1 þ q3

2

� �
þ ð1� wÞm ð8Þ
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where w and 1� w are the weights assigned to the mid-quartile range ðq1 þ q3Þ=2 and the median m. The new
estimator is a weighted average of the mid-quartile range and the median. It is worth mentioning that the
mid-quartile range is also a measure of the population center, which is the numerical value midway between
the first and third quartiles.7 In addition, by taking w¼ 2/3 for all n, the new estimator reduces to the estimator (2)
proposed by Wan et al.4
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Figure 1. The true optimal weights (simulated using the statistical software R), and the approximated optimal weights for scenario

S1, S2, and S3, respectively.
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Following the similar arguments as in ‘‘Improved estimation of the sample mean in S1 ¼ fa,m, b; ng’’ section,
the optimal weight for the mid-quartile range that minimizes the MSE function is obtained as

woptðnÞ ¼
4VarðmÞ � 2Covðq1 þ q3,mÞ

Varðq1 þ q3Þ þ 4VarðmÞ � 4Covðq1 þ q3,mÞ
ð9Þ

where q1 ¼ �þ �ZðQþ1Þ, q3 ¼ �þ �Zð3Qþ1Þ. The detailed derivation of (9) is provided in the proof of Theorem 2
in Appendix 2. The numerical values of woptðnÞ for n from 5 to 101 are displayed in the middle panel of Figure 1.
It is evident that woptðnÞ is a decreasing function of n with a lower bound around 0.7. We have further
demonstrated in Theorem 2 in Appendix 2 that, from a theoretical point of view, the limit of woptðnÞ is about
0.699 as n tends to infinity. In contrast to the extreme values a and b in Scenario S1, the first and third quartiles are
robust statistics and are equally important as the median in the estimation of the sample mean.

Noting that the optimal weight in (9) is rather complicated for practitioners, we therefore propose an
approximation formula for woptðnÞ. In view of the middle panel of Figure 1 and also the theoretical limit in
Theorem 2, we take the baseline to be 0.7 and approximate the remaining part to be a power function. That is,
we consider the approximation form as 0:7þ c1n

c2 . Finally, using the observed true weights, we figure out that the
best coefficients are about c1 ¼ 0:39 and c2 ¼ �1. This leads to the approximated optimal weight as

~woptðnÞ � 0:7þ
0:39

n
ð10Þ

For researchers who prefer to use 0.699 as the baseline, the approximation formula is given as
~woptðnÞ � 0:699þ 0:4=n. Its performance, however, is very similar to the approximated formula in (10). To
assess the accuracy of the approximation, we also display the values of ~woptðnÞ in the second graph of Figure 1.
It is evident that the approximated optimal weights fit well the true optimal weights, in particular for the sample
size ranging from 5 to 101.

Finally, by plugging the approximation formula (10) into the estimator (8), we propose the estimator for
Scenario S2 as

�XðwÞ � 0:7þ
0:39

n

� �
q1 þ q3

2
þ 0:3�

0:39

n

� �
m ð11Þ

The performance of (11) is evaluated in Appendix 6, together with its numerical comparison with the estimation
method in Wan et al.4

2.2.3 Improved estimation of the sample mean in S3 ¼ fa,q1,m,q3,b; ng

For scenario S3, following the same spirit, we propose to estimate the sample mean by

�Xðw1,w2Þ ¼ w1
aþ b

2

� �
þ w2

q1 þ q3
2

� �
þ ð1� w1 � w2Þm ð12Þ

where w1, w2, and ð1� w1 � w2Þ are the weights assigned to the mid-range ðaþ bÞ=2, the mid-quartile
range ðq1 þ q3Þ=2, and the median m, respectively. Taking w1 ¼ 0:25 and w2 ¼ 0:5, the proposed estimator
reduces to the estimator (3) proposed by Bland.5 Theorem 3 in Appendix 2 shows that (12) is an unbiased
estimator of �. Further, by minimizing the first-order derivatives of MSEð �Xðw1,w2ÞÞ, the optimal weights of w1

and w2 are given as,

w1,opt

w2,opt

� �
¼

Aþ 4C� 4E 4CþD� 2E� 2F

4CþD� 2E� 2F Bþ 4C� 4F

� ��1 4C� 2E

4C� 2F

� �
ð13Þ

where A ¼ Varðaþ bÞ, B ¼ Varðq1 þ q3Þ, C ¼ VarðmÞ, D ¼ Covðaþ b, q1 þ q3Þ, E ¼ Covðaþ b,mÞ, and
F ¼ Covðq1 þ q3,mÞ.

To explore the behavior of the optimal weights, we plot the true values of w1,optðnÞ and w2,optðnÞ in the bottom
panel of Figure 1. From the figure, we note that w1,optðnÞ (the green solid points) is a decreasing function of n with
lower bound 0, and w2,optðnÞ (the purple solid triangles) is an increasing function of n with upper bound about 0.7.
It is also noteworthy that w1,optðnÞ and w2,optðnÞ are both 0.4 when n¼ 5. From the statistical point of view, when
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n¼ 5, the five-number summary is provided as the whole sample, and consequently, the sample mean which assigns
a weight of 0.2 to each sample is the best unbiased estimator of �. This leads to w1,optðnÞ ¼ w2,optðnÞ ¼ 0:4. Note
also that (13) is rather complicated for practical use. Following the similar structures as in (6) and (10), we propose
to estimate the two optimal weights by c1=ðc1 þ nc2 Þ and 0:7� c3n

c4 , respectively. Then by the observed true
weights, the best values of the coefficients are c1 ¼ 2:2, c2 ¼ 0:75, c3 ¼ 0:72, and c4 ¼ 0:55. This leads to the
approximated optimal weights as

~w1,optðnÞ �
2:2

2:2þ n0:75
and ~w2,optðnÞ � 0:7�

0:72

n0:55
ð14Þ

To assess the accuracy of the approximation, we also display the values of ~w1,optðnÞ (the red line) and ~w2,optðnÞ
(the blue line) in the bottom panel of Figure 1. It is evident that the approximated optimal weights match precisely
their respective values of the true optimal weights.

Finally, by plugging the approximation formula (14) into the estimator (12), we propose the estimator for
scenario S3 as

�Xðw1,w2Þ �
2:2

2:2þ n0:75

� �
aþ b

2
þ 0:7�

0:72

n0:55

� �
q1 þ q3

2
þ 0:3þ

0:72

n0:55
�

2:2

2:2þ n0:75

� �
m ð15Þ

The performance of (15) is evaluated in Appendix 7, together with its numerical comparison with the estimation
method in Bland.5

3 Simulation studies

To compare the performance between existing methods and our newly proposed methods, we conduct some
simulation studies. Using the same settings as in Hozo et al.,3 five different distributions are taken into
consideration: the normal distribution with mean �¼ 50 and standard deviation �¼ 17, the log-normal
distribution with location parameter �¼ 4 and scale parameter � ¼ 0:3, the beta distribution with shape
parameters �¼ 9 and �¼ 4, the exponential distribution with rate parameter �¼ 10, and the Weibull
distribution with shape parameter k¼ 2 and scale parameter �¼ 35.

For the ith simulation, we generate a random sample of n observations from a specified distribution and
compute the sample mean �Xi. We also compute the sample mean from the median, minimum, and maximum
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Figure 2. RMSE of the sample mean estimation for data from normal distribution for scenario S1. The pink line with solid circles

represents Hozo et al.’s method, and the light blue line with empty circles represents the new estimator.
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values and/or the first and third quartiles by using the existing and new methods, denoted by �XEx
i and �XNew

i ,
respectively. To evaluate the performance of the proposed ‘‘rules of thumb,’’ we then compute the relative mean
squared error (RMSE) of the estimators as

RMSEð �XExÞ ¼

PT
i¼1 ð

�XEx
i � �Þ

2

PT
i¼1 ð

�Xi � �Þ
2

and RMSEð �XNewÞ ¼

PT
i¼1 ð

�XNew
i � �Þ2PT

i¼1 ð
�Xi � �Þ

2
ð16Þ

where � is the true mean value and T is the total number of repetitions. The smaller the RMSE is, the better
accuracy is achieved. It is also noteworthy that the lower bound of RMSE is 1, in which the approximated
mean estimation performs equally well as the true sample mean. Moreover, to save space, we only provide the
results of the simulation study for scenario S1. The other two simulation studies will be provided as Appendices 6
and 7.

In this simulation study, we compare Hozo et al.’s estimator (1) and our proposed estimator (7). Figure 2
reports the RMSE of 100,000 simulations for normal distribution with the sample size ranging from 5 to 101.
It is obvious that our new method has a much smaller RMSE than Hozo et al.’s method. When n increases, the two
methods tend to have a similar performance as the optimal weight of ðaþ bÞ=2 reduces to about zero for large
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sample sizes. Figure 3 provides the simulation results of the other four distributions as we mentioned before. We
observe that for each of skewed distributions, our new estimator provides a more accurate estimate of the true
mean than Hozo et al.’s method, especially when n is large. Note also that Hozo et al.’s method has a change point
near n¼ 25 (as suggested in (1)), especially for log-normal distribution and exponential distribution. In conclusion,
we have provided an optimal and smoothly changed weight for ðaþ bÞ=2, or equivalently for m, which makes the
new estimator more adaptive and more stable than Hozo et al.’s method for scenario S1, no matter whether the
data are normal or skewed.

4 Real data analysis

To illustrate the potential value of our method in real data analysis, we collect some real data and compare the
estimations using our methods with the ones using the existing method. The collected data are from a systematic
review and meta-analysis of the association between low serum vitamin D and risk of active tuberculosis in
humans.8

4.1 Data description

In Nnoaham and Clarke,8 the summary statistics reported from seven studies were used to conduct the meta-
analysis. Among those seven studies, three of them only reported the sample median and range, which is exactly
the case of Scenario S1. For these three studies, the sample mean and standard deviation need to be estimated from
the sample median and range in order to calculate the pooled effect size. The summary statistics are presented in
Table 1, in which Studies 1 to 3 reported the median, minimum, and maximum values, Studies 4 and 5 reported the
mean values and standard deviations, Study 6 reported the odds ratio for vitamin D deficiency in tuberculosis
cases compared with controls, and Study 7 reported the mean value and range (i.e. difference between the
minimum and maximum).

4.2 Results and comparison

To conduct a random effect meta-analysis, Nnoaham and Clarke first used Hozo et al.’s method to estimate the
sample mean and standard deviation for the first three studies and the sample standard deviation for Study 7 in
Table 1. Next, the mean difference (i.e. the Cohen’s d value9) is computed as the effect size. The odds ratio in Study
6 is directly converted to the effect size by Chinn.10 Finally, the pooled effect size is computed and the

Table 1. Summary of included studies.

Index Study

Size

(cases)

Size

(controls) Results (serum Vitamin D levels)

1 Davies et al.11 40 40 Median (range) in: Cases 16.0 nmol/L

(2.25–74.25 nmol/L), Controls 27.25 nmol/L

(9.0–132.5 nmol/L)

2 Grange et al.12 40 38 Median (range) in: Cases 65.75 nmol/L

(43.75–130.5 nmol/L), Controls 69.5 nmol/L

(48.5–125 nmol/L)

3 Davies et al.13 15 15 Median (range) in: Cases 39.75 nmol/L

(16.75–89.25 nmol/L), Controls 65.5 nmol/L

(26.25–114.75 nmol/L)

4 Davies et al.14 51 51 Mean (SD) in: Cases 69.5 nmol/L (24.5 nmol/L),

Controls 95.5 nmol/L (29.25 nmol/L)

5 Chan et al.15 24 24 Mean (SD) in: Cases 46.5 nmol/L (18.5 nmol/L),

Controls 52.25 nmol/L (15.75 nmol/L)

6 Wilkinson et al.16 103 42 Odds ratio (CI) of cases compared with controls 2.9

(1.3–6.5)

7 Sasidharan et al.17 35 16 Mean (range) in: Cases 26.75 nmol/L (2.5–75 nmol/L),

Controls 48.5 nmol/L (22.5–145 nmol/L)
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heterogeneity between studies will be assessed using the �2 statistic and the I2 index (the amount of variation due to
heterogeneity). Their results are presented in Table 2. It is worth to mention that in Nnoaham and Clarke,8 they
mistakenly reported the estimated effect size of Study 2.

Following the same aforementioned procedure, we use equation (7) to estimate the sample mean for the first
studies and the method of Wan et al.4 to estimate the sample standard deviation for the first three studies and
Study 7. Then, we further use the same method as Nnoaham and Clarke did to compute the pooled effect size, the
�2 statistic, and the I2 index with our estimations. The new results are reported in Table 3.

Comparing Tables 2 and 3, we can observe some significant differences between the old results and the new
results. The most noticeable one is the effect size difference for Study 1. The effect size using Hozo et al.’s method is
within the range of large effect level while it only reaches the median effect level using our method (i.e. 0.8656 vs.
0.6622). The effect size different for Studies 2, 3, and 7 is also non-trivial. Although the pooled effect size from both
methods seems to be close to each other, we found that the I2 indices for heterogeneity between studies are quite
different (i.e. 48.54% from Hozo et al.’s method and 34.85% from our method). According to Higgins et al.,18 the
value 48.54% of I2 is very close to moderate heterogeneity level while the value 34.85% is close to little
heterogeneity level. It is obvious that using our method in this study may eventually lead to a different conclusion.

Table 2. Effect sizes of low serum vitamin D in tuberculosis (using Hozo et al.’s method).

Index Study

Size

(cases)

Size

(control)

Effect

size (SE) Weight

95% CI of

effect size

1 Davies et al.11 40 40 0.8656 (0.0562) 17.79 [0.4043, 1.3218]

2 Grange et al.12 40 38 0.0824 (0.0527) 18.97 [�0.3621, 0.5263]

3 Davies et al.13 15 15 0.9190 (0.1590) 6.29 [0.1569, 1.6664]

4 Davies et al.14 51 51 0.9637 (0.0447) 22.35 [0.5511, 1.3719]

5 Chan et al.15 22 23 0.3353 (0.0944) 10.59 [�0.2554, 0.9221]

6 Wilkinson et al.16 103 42 0.5882 (0.0352) 28.40 [0.2220, 0.9525]

7 Sasidharan et al.17 35 16 0.9584 (0.1045) 9.57 [0.3329, 1.5749]

Total (95% CI) 306 225 0.6732 100.00 [0.4961, 0.8498]

Test for heterogeneity: �2 ¼ 11:6594,df ¼ 6ðP ¼ 0:07Þ,I2 ¼ 48:539 %

Table 3. Effect sizes of low serum vitamin D in tuberculosis (using the new method).

Index Study

Size

(cases)

Size

(control)

Effect

size (SE) Weight

95% CI of

effect Size

1 Davies et al.11 40 40 0.6622 (0.0542) 18.46 [0.2098, 1.1105]

2 Grange et al.12 40 38 0.1588 (0.0528) 18.93 [�0.2864, 0.6030]

3 Davies et al.13 15 15 0.9852 (0.1614) 6.19 [0.2171, 1.7378]

4 Davies et al.14 51 51 0.9637 (0.0447) 22.35 [0.5511, 1.3719]

5 Chan et al.15 22 23 0.3353 (0.0944) 10.59 [�0.2554, 0.9221]

6 Wilkinson et al.16 103 42 0.5882 (0.0352) 28.40 [0.2220, 0.9525]

7 Sasidharan et al.17 35 16 0.9084 (0.1036) 9.66 [0.2861, 1.5223]

Total (95% CI) 306 225 0.6257 100.00 [0.4510, 0.8035]

Test for heterogeneity: �2 ¼ 9:2091,df ¼ 6ðP ¼ 0:162Þ,I2 ¼ 34:847 %

Table 4. Summary table for estimating �X under different scenarios.

Scenario S1 Scenario S2 Scenario S3

Hozo et al.3 Equation (1) – –

Wan et al.4 – Equation (2) –

Bland5 – – Equation (3)

New methods Equation (7) Equation (11) Equation (15)
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5 Conclusion

Meta-analysis is a popular method in evidence-based medicine to provide an overall estimation of a treatment
effectiveness from a set of similar clinical trials. The sample mean and standard deviation are often used in meta-
analysis but sometimes the results are recorded using the median, the minimum and maximum values, and/or the
first and third quartiles. Searching for a reliable approximation method to obtain the sample mean and standard
deviation and for conducting further research has emerged as a popular topic. The estimation of the sample
standard deviation has been thoroughly discussed and significantly improved in Wan et al.4 But the current
estimation of the sample mean adopts either the famous method proposed by Hozo et al.3 or its extension by
Bland.5 One major limitation of such methods, however, is that the information of the sample size is not fully used
or even ignored in the sample mean estimation.

For the three frequently encountered scenarios, the simulation studies show that our newly proposed methods,
which incorporate the sample size via a smoothly changing weight in the estimation, greatly improve the existing
methods. For all scenarios, we provide both theoretical and empirical computations for the optimal weights. The
simulation results show that the empirical computation of optimal weight not only matches the theoretical
computation with high accuracy but has almost the same simplicity as the existing methods. Here, we provide a
summary table of the new estimators of the sample mean in different scenarios, which may serve as a comprehensive
guidance for researchers when performing meta-analysis. To help the researchers to utilize the proposed mean
estimators, an Excel spread sheet containing all estimators in Table 4 is provided as the additional file and is
freely available at www.math.hkbu.edu.hk/�tongt/papers/optimalmean.xlsx. Using the spread sheet, users can
easily obtain the sample mean values by providing the corresponding information for appropriate scenario such
as the sample size, median and extremum values. We also provide the formulas for Hozo et al.’s, Bland’s and Wan
et al.’s methods in the Excel spread sheet for the comparison. To further illustrate the performance of the newly
proposed methods, a real meta-analysis was conducted using seven studies from a systematic review and meta-
analysis of the association between low serum vitamin D and risk of active tuberculosis in humans.8 We compared
the effect sizes obtained from our proposedmethods with those from the existing methods. It is evident that there are
some significant differences between the new results and the old ones. Since the simulation studies indicate that the
newmethods could improve the estimation performance, we expect the proposed estimators may help researchers to
make more convincing conclusions when conducting meta-analysis in real-world settings.
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Appendix 1

Some preliminary results

To derive the optimal weights for the three scenarios, we first present some preliminary results for the normal
distribution and for the associated order statistics. The normal distribution Nð�, �2Þ is commonly used in statistics
for data analysis. Its probability density function (PDF) is given as

�ðxj�, �2Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2	�2
p exp �

ðx� �Þ2

2�2

� �

where � is the mean value and �2 is the variance, or equivalently, � is the standard deviation. For the normal
distribution, � is also known as the median and the mode. When �¼ 0 and �2 ¼ 1, the distribution reduces to the
standard normal distribution N(0, 1). Let also �ð�Þ be the cumulative density function (CDF) of the standard
normal distribution. By symmetry, we have �ðzÞ ¼ �ð�zÞ and �ðzÞ ¼ 1��ð�zÞ.

To investigate the properties of the five-number summary for the data, we introduce some theoretical results for
the order statistics Zð1Þ � � � � � ZðnÞ of the random sample fZ1, . . . ,Zng from the standard normal distribution. By
symmetry, ZðiÞ and �Zðn�iþ1Þ follow the same distribution, and ðZðiÞ,Zð j ÞÞ and ðZðn�iþ1Þ,Zðn�jþ1ÞÞ follow the same
joint distribution. According to Arnold and Balakrishnan,19 Chen,20 and Ahsanullah et al.,21 we have the
following two lemmas.

Lemma 1

Let Z1, . . . ,Zn be a random sample of N(0, 1), and Zð1Þ � � � � � ZðnÞ be the ordered statistics Z1, . . . ,Zn. Then

EðZðiÞÞ ¼ �EðZðn�iþ1ÞÞ, 1 � i � n,

EðZðiÞZð j ÞÞ ¼ EðZðn�iþ1ÞZðn�jþ1ÞÞ, 1 � i � j � n

Lemma 2

Let Z1, . . . ,Zn be a random sample of N(0, 1), and Z½np� be the pth quantile of the sample, where ½np� denotes the
integer part of np. Let also ��1ð�Þ be the inverse function of �ð�Þ.
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(i) For any 05 p5 1, we have

ffiffiffi
n
p
ðZ½np� ���1ð pÞÞ �!

d
N 0,

pð1� pÞ

½�ð��1ð pÞÞ�2

� �
, as n!1

where �!
d

denotes convergence in distribution.
(ii) For any 05 p1 5 p2 5 1, as n!1, ðZ½np1�,Z½np2�Þ follows asymptotically a bivariate normal distribution

with mean vector ð��1ð p1Þ,�
�1ð p2ÞÞ and covariance matrix � ¼ ð�ijÞ2	2, where �12 ¼ �21 and

�ij ¼
pið1� pj Þ

n�ð��1ð piÞÞ�ð��1ð pj ÞÞ
, 1 � i � j � 2

Appendix 2

Theoretical results of the proposed estimators

Recall that in ‘‘Improved methods’’ section, X1, . . . ,Xn are defined as a random sample of size n from the normal
distribution Nð�, �2Þ, and Xð1Þ � � � � � XðnÞ are the ordered statistics of the sample. Meanwhile, they can
represented as Xi ¼ �þ �Zi and XðiÞ ¼ �þ �ZðiÞ for i ¼ 1, . . . , n. By the two lemmas in Appendix 1, we have
the following theoretical results for the proposed estimators under three scenarios, respectively.

Theorem 1

For the estimator �XðwÞ in (4) for scenario S1 ¼ fa,m, b; ng, i.e.

�XðwÞ ¼ w
aþ b

2

� �
þ ð1� wÞm

we have the following conclusions:

(i) �XðwÞ in (4) is an unbiased estimator of �, i.e. Eð �XðwÞÞ ¼ �.
(ii) MSEð �XðwÞÞ ¼ ðw2=4ÞVarðaþ bÞ þ ð1� wÞ2VarðmÞ þ wð1� wÞCovðaþ b,mÞ.
(iii) woptðnÞ ¼ 4VarðmÞ � 2Covðaþ b,mÞ½ �= Varðaþ bÞ þ 4VarðmÞ � 4Covðaþ b,mÞ½ �.

Proof

(i) The expected value of the proposed estimator is

Eð �XðwÞÞ ¼
w

2
EðaÞ þ

w

2
EðbÞ þ ð1� wÞEðmÞ

¼
w

2
Eð�þ �Zð1ÞÞ þ

w

2
Eð�þ �ZðnÞÞ þ ð1� wÞEð�þ �Zð2Qþ1ÞÞ

¼
w

2
�þ �EðZð1ÞÞ
	 


þ
w

2
�þ �EðZðnÞÞ
	 


þ ð1� wÞ �þ �EðZð2Qþ1ÞÞ
	 


¼ �þ � EðZð1ÞÞ þ EðZnÞ
� �

þ �EðZð2Qþ1ÞÞ

By Lemma 1 with i¼ 1, we have EðZð1ÞÞ ¼ �EðZðnÞÞ; similarly with i ¼ 2Qþ 1, we have EðZð2Qþ1ÞÞ ¼ 0. This
shows that �XðwÞ is an unbiased estimator of �.

(ii) By the result in (i), we have Biasð �XðwÞÞ ¼ 0. Then

MSEð �XðwÞÞ ¼ Varð �XðwÞÞ

¼ Var
w

2
ðaþ bÞ þ ð1� wÞm

h i

¼
w2

4
Varðaþ bÞ þ ð1� wÞ2VarðmÞ þ wð1� wÞCovðaþ b,mÞ
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(iii) The first derivative of MSE with respect to w is

d

dw
MSEð �XðwÞÞ ¼

w

2
Varðaþ bÞ þ 2ðw� 1ÞVarðmÞ þ ð1� 2wÞCovðaþ b,mÞ

Letting the first derivative equal to zero, we have the solution of w as

w ¼
4VarðmÞ � 2Covðaþ b,mÞ

Varðaþ bÞ þ 4VarðmÞ � 4Covðaþ b,mÞ
ð17Þ

Further by Cauchy–Schwarz inequality,

d2

dw2
MSEð �XðwÞÞ ¼

1

2
Varðaþ bÞ þ 2VarðmÞ � 2Covðaþ b,mÞ

¼
1

2
Varðaþ bÞ þ Varð2mÞ � 2Covðaþ b, 2mÞ½ � � 0,

we conclude that the derived w in (17) is the optimal weight for the proposed estimator.

Theorem 2

For Scenario S2 ¼ fq1,m, q3; ng, recall the estimator �XðwÞ in (8), i.e.

�XðwÞ ¼ w
q1 þ q3

2

� �
þ ð1� wÞm

we have the following conclusions:

(i) �XðwÞ in (8) is an unbiased estimator of �, i.e. Eð �XðwÞÞ ¼ �.
(ii) MSEð �XðwÞÞ ¼ ðw2=4ÞVarðq1 þ q3Þ þ ð1� wÞ2VarðmÞ þ wð1� wÞCovðq1 þ q3,mÞ.
(iii) woptðnÞ ¼ 4VarðmÞ � 2Covðq1 þ q3,mÞ½ �= Varðq1 þ q3Þ þ 4VarðmÞ � 4Covðq1 þ q3,mÞ½ �.
(iv) When n is large, woptðnÞ � 0:699.

Proof

(i) Following the same procedure as proving (i) of Theorem 1, we need to compute Eð �XðwÞÞ,

Eð �XðwÞÞ ¼
w

2
Eðq1Þ þ

w

2
Eðq3Þ þ ð1� wÞEðmÞ

¼
w

2
EðXðQþ1ÞÞ þ

w

2
EðXð3Qþ1ÞÞ þ ð1� wÞEðXð2Qþ1ÞÞ

¼
w

2
Eð�þ �ZðQþ1ÞÞ þ

w

2
Eð�þ �Zð3Qþ1ÞÞ þ ð1� wÞEð�þ �Zð2Qþ1ÞÞ

¼
w

2
�þ �EðZðQþ1ÞÞ
	 


þ
w

2
�þ �EðZð3Qþ1ÞÞ
	 


þ ð1� wÞ �þ �EðZð2Qþ1ÞÞ
	 


¼ w�þ ð1� wÞ�þ � EðZðQþ1ÞÞ þ EðZ3Qþ1Þ
� �

þ �EðZð2Qþ1ÞÞ:

By using Lemma 1, when i ¼ Qþ 1 or 3Qþ 1, we have EðZðQþ1ÞÞ ¼ �EðZð3Qþ1ÞÞ. By proving (i) of Theorem 1,
we know that EðZð2Qþ1ÞÞ ¼ 0. This indicates that �XðwÞ is an unbiased estimator of �.

(ii) By (i), we have Biasð �XðwÞÞ ¼ 0, then the MSE of the estimator �XðwÞ is,

MSEð �XðwÞÞ ¼ Varð �XðwÞÞ ¼ Var
w

2
ðq1 þ q3Þ þ ð1� wÞm

h i

¼
w2

4
Varðq1 þ q3Þ þ ð1� wÞ2VarðmÞ þ wð1� wÞCovðq1 þ q3,mÞ

(iii) The first derivative of MSE with respect to w is

d

dw
MSEð �XðwÞÞ ¼

w

2
Varðq1 þ q3Þ þ 2ðw� 1ÞVarðmÞ þ ð1� 2wÞCovðq1 þ q3,mÞ
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Letting the first derivative equal to zero, we have the solution of w as

w ¼
4VarðmÞ � 2Covðq1 þ q3,mÞ

Varðq1 þ q3Þ þ 4VarðmÞ � 4Covðq1 þ q3,mÞ
ð18Þ

By Cauchy–Schwarz inequality,

d2

dw2
MSEð �XðwÞÞ ¼

1

2
Varðq1 þ q3Þ þ 2VarðmÞ � 2Covðq1 þ q3,mÞ

¼
1

2
Varðq1 þ q3Þ þ Varð2mÞ � 2Covðq1 þ q3, 2mÞ½ � � 0,

we conclude that the derived w in (18) is the optimal weight for the proposed estimator.
(iv) Let p1 ¼ 0:25, p2 ¼ 0:5 and p3 ¼ 0:75, the sample first and third quartiles and the median are then be

represented by q1 ¼ �þ �Z½0:25n�, m ¼ �þ �Z½0:5n� and q3 ¼ �þ �Z½0:75n�. By Lemma 2, when n is large, we have

VarðZ½0:25n�Þ ¼
p1ð1� p1Þ

n½�ð��1ð p1ÞÞ�
2
¼

0:25ð0:75Þ

n½�ð��1ð0:25ÞÞ�2
�

1:8568

n
,

VarðZ½0:5n�Þ ¼
0:52

n½�ð��1ð0:5ÞÞ�2
¼
	

2n
,

VarðZ½0:75n�Þ ¼
0:25ð0:75Þ

n½�ð��1ð0:75ÞÞ�2
�

1:8568

n
,

CovðZ½0:25n�,Z½0:5n�Þ ¼
0:25ð0:5Þ

n�ð��1ð0:25ÞÞ�ð��1ð0:5ÞÞ
�

0:9860

n
,

CovðZ½0:25n�,Z½0:75n�Þ ¼
0:252

n�ð��1ð0:25ÞÞ�ð��1ð0:75ÞÞ
�

0:6189

n

ð19Þ

Hence, we could easily obtain that Varðq1Þ ¼ Varðq3Þ � 1:8568�2=n, VarðmÞ � 	�2=2n, Covðq1,mÞ � 0:9860�2=n
and Covðq1, q3Þ � 0:6189�2=n, as n!1.

By (iii), plugging in the above information into the optimal weight formula (18),

woptðnÞ ¼
4VarðmÞ � 4Covðq1,mÞ

Varðq1Þ þ Varðq3Þ þ Covðq1, q3Þ þ 4VarðmÞ � 8Covðq1,mÞ

�
2	� 4ð0:9860Þ

2ð1:8568Þ þ 2ð0:6189Þ þ 2	� 8ð0:9860Þ
� 0:699

As a result, for the approximation model of woptðnÞ, it is reasonable to choose 0.7 as its baseline.

Theorem 3

For Scenario S3 ¼ fa, q1,m, q3, b; ng, recall the estimator �XðwÞ in (12), i.e.

�XðwÞ ¼ w1
aþ b

2

� �
þ w2

q1 þ q3
2

� �
þ ð1� w1 � w2Þm

we have the following conclusions:

(i) �XðwÞ in (12) is an unbiased estimator of �, i.e. Eð �XðwÞÞ ¼ �.
(ii) The MSE of the estimator is given as

MSEð �Xðw1,w2ÞÞ ¼ ðw
2
1=4ÞVarðaþ bÞ þ ðw2

2=4ÞVarðq1 þ q3Þ þ ð1� w1 � w2Þ
2VarðmÞ

þ ðw1w2=2ÞCovðaþ b, q1 þ q3Þ þ w1ð1� w1 � w2ÞCovðaþ b,mÞ

þ w2ð1� w1 � w2ÞCovðq1 þ q3,mÞ
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(iii) The optimal weights of ðaþ bÞ=2 and ðq1 þ q3Þ=2 are

w1,opt

w2,opt

� �
¼

Aþ 4C� 4E 4CþD� 2E� 2F
4CþD� 2E� 2F Bþ 4C� 4F

� ��1
4C� 2E
4C� 2F

� �

Proof

(i) The expected value of the estimator can be obtained as

Eð �Xðw1,w2ÞÞ ¼
w1

2
EðaÞ þ

w1

2
EðbÞ þ

w2

2
Eðq1Þ þ

w2

2
Eðq3Þ þ ð1� w1 � w2ÞEðmÞ

¼
w1

2
E �þ �Zð1Þ
	 


þ
w1

2
E �þ �ZðnÞ
	 


þ
w2

2
E �þ �ZðQþ1Þ
	 


þ
w2

2
E �þ �Zð3Qþ1Þ
	 


þ ð1� w1 � w2ÞE �þ �Zð2Qþ1Þ
	 


¼ �þ
w1

2
� EðZð1ÞÞ þ EðZnÞ
� �

þ
w2

2
� EðZðQþ1ÞÞ þ EðZ3Qþ1Þ
� �

þ �E Zð2Qþ1Þ
	 


By Lemma 1, with i ¼ 1,Qþ 1, 2Qþ 1, 3Qþ 1 or n, we have EðZð1ÞÞ ¼ �EðZðnÞÞ, EðZðQþ1ÞÞ ¼ �EðZð3Qþ1ÞÞ and
EðZð2Qþ1ÞÞ ¼ 0, which shows that �XðwÞ is an unbiased estimator of �.

(ii) By (i), we have Biasð �Xðw1,w2ÞÞ ¼ 0. Then,

MSEð �Xðw1,w2ÞÞ ¼ Var
w1

2
ðaþ bÞ þ

w2

2
ðq1 þ q3Þ þ ð1� w1 � w2Þm

h i

¼
w2
1

4
Varðaþ bÞ þ

w2
2

4
Varðq1 þ q3Þ þ ð1� w1 � w2Þ

2VarðmÞ

þ
w1w2

2
Covðaþ b, q1 þ q3Þ þ w1ð1� w1 � w2ÞCovðaþ b,mÞ

þ w2ð1� w1 � w2ÞCovðq1 þ q3,mÞ

(iii) With the definition of A through F in ‘‘Improved estimation of the sample mean in S3 ¼ fa, q1,m, q3, b; ng’’
section, the two first partial derivatives of MSE with respect to w1 and w2 are

@

@w1
MSEð �Xðw1,w2ÞÞ ¼ w1 Aþ 4C� 4Eð Þ þ w2 4CþD� 2E� 2Fð Þ � ð4C� 2EÞ,

@

@w2
MSEð �Xðw1,w2ÞÞ ¼ w1 4CþD� 2E� 2Fð Þ þ w2 Bþ 4C� 4Fð Þ � ð4C� 2FÞ

8>><
>>:

Letting the first partial derivatives be zero, we have

Aþ 4C� 4E 4CþD� 2E� 2F

4CþD� 2E� 2F Bþ 4C� 4F

� �
w1

w2

� �
¼

4C� 2E

4C� 2F

� �
ð20Þ

This leads to

w1

w2

� �
¼

Aþ 4C� 4E 4CþD� 2E� 2F

4CþD� 2E� 2F Bþ 4C� 4F

� ��1 4C� 2E

4C� 2F

� �
ð21Þ

Further, we can verify that the coefficient matrix in the left side of (20) is positive definite. Hence,
MSEð �Xðw1,w2ÞÞ is a convex function of w1 and w2. This shows that the derived w1 and w2 in (21) are the
optimal weights for the proposed estimator.
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Appendix 3

True optimal weights in scenario S1

Appendix 4

True optimal weights in scenario S2

Table 5. The true optimal weights for ðaþ bÞ=2 in scenario S1, with n ranging from 5 to 501.

n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ

5 0.5514 105 0.1084 205 0.0671 305 0.0497 405 0.0399

9 0.4346 109 0.1056 209 0.0661 309 0.0492 409 0.0396

13 0.3682 113 0.1030 213 0.0652 313 0.0487 413 0.0393

17 0.3232 117 0.1005 217 0.0643 317 0.0483 417 0.0391

21 0.2903 121 0.0982 221 0.0635 321 0.0477 421 0.0387

25 0.2642 125 0.0960 225 0.0626 325 0.0474 425 0.0384

29 0.2435 129 0.0939 229 0.0617 329 0.0468 429 0.0382

33 0.2263 133 0.0918 233 0.0609 333 0.0465 433 0.0379

37 0.2118 137 0.0900 237 0.0602 337 0.0460 437 0.0376

41 0.1992 141 0.0881 241 0.0595 341 0.0456 441 0.0373

45 0.1882 145 0.0863 245 0.0588 345 0.0452 445 0.0370

49 0.1786 149 0.0847 249 0.0580 349 0.0448 449 0.0368

53 0.1702 153 0.0830 253 0.0573 353 0.0445 453 0.0366

57 0.1626 157 0.0815 257 0.0566 357 0.0440 457 0.0362

61 0.1557 161 0.0800 261 0.0560 361 0.0436 461 0.0360

65 0.1495 165 0.0786 265 0.0554 365 0.0433 465 0.0358

69 0.1438 169 0.0773 269 0.0547 369 0.0429 469 0.0356

73 0.1385 173 0.0760 273 0.0541 373 0.0425 473 0.0353

77 0.1338 177 0.0748 277 0.0535 377 0.0422 477 0.0351

81 0.1292 181 0.0735 281 0.0529 381 0.0418 481 0.0349

85 0.1251 185 0.0723 285 0.0523 385 0.0415 485 0.0347

89 0.1213 189 0.0713 289 0.0518 389 0.0412 489 0.0344

93 0.1178 193 0.0702 293 0.0513 393 0.0409 493 0.0342

97 0.1144 197 0.0692 297 0.0507 397 0.0406 497 0.0340

101 0.1114 201 0.0681 301 0.0501 401 0.0402 501 0.0338

Table 6. The true optimal weights for ðq1 þ q3Þ=2 in scenario S2, with n ranging from 5 to 501.

n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ

5 0.7786 105 0.7029 205 0.7007 305 0.7004 405 0.7001

9 0.7436 109 0.7028 209 0.7008 309 0.7001 409 0.6999

13 0.7301 113 0.7024 213 0.7009 313 0.7004 413 0.6997

17 0.7225 117 0.7023 217 0.7010 317 0.7004 417 0.7000

(continued)
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Appendix 5

True optimal weights in scenario S3

Table 6. Continued

n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ n woptðnÞ

21 0.7180 121 0.7022 221 0.7009 321 0.7003 421 0.6999

25 0.7150 125 0.7020 225 0.7006 325 0.7000 425 0.6998

29 0.7126 129 0.7022 229 0.7007 329 0.7002 429 0.6999

33 0.7108 133 0.7021 233 0.7006 333 0.7003 433 0.6997

37 0.7098 137 0.7020 237 0.7005 337 0.7002 437 0.7001

41 0.7088 141 0.7017 241 0.7008 341 0.7001 441 0.6999

45 0.7078 145 0.7017 245 0.7006 345 0.7000 445 0.7000

49 0.7071 149 0.7015 249 0.7006 349 0.7002 449 0.7001

53 0.7066 153 0.7014 253 0.7007 353 0.7000 453 0.6999

57 0.7060 157 0.7014 257 0.7004 357 0.7000 457 0.6997

61 0.7055 161 0.7014 261 0.7008 361 0.7001 461 0.6998

65 0.7049 165 0.7012 265 0.7006 365 0.7000 465 0.6998

69 0.7046 169 0.7012 269 0.7004 369 0.7002 469 0.7000

73 0.7045 173 0.7014 273 0.7003 373 0.7000 473 0.6998

77 0.7041 177 0.7013 277 0.7003 377 0.7000 477 0.6998

81 0.7037 181 0.7012 281 0.7004 381 0.7001 481 0.6997

85 0.7038 185 0.7010 285 0.7004 385 0.7000 485 0.6997

89 0.7034 189 0.7010 289 0.7005 389 0.7001 489 0.6997

93 0.7033 193 0.7008 293 0.7003 393 0.7001 493 0.6998

97 0.7031 197 0.7010 297 0.7002 397 0.7000 497 0.6996

101 0.7028 201 0.7009 301 0.7003 401 0.7000 501 0.6997

Table 7. The true optimal weights w1,optðnÞ and w2,optðnÞ in scenario S3, with n ranging from 5 to 501.

n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ

5 0.4000 0.4000 133 0.0553 0.6556 257 0.0343 0.6722 381 0.0254 0.6795

9 0.2917 0.4760 137 0.0541 0.6567 261 0.0339 0.6726 385 0.0252 0.6796

13 0.2386 0.5154 141 0.0532 0.6571 265 0.0334 0.6731 389 0.0251 0.6795

17 0.2053 0.5403 145 0.0521 0.6585 269 0.0331 0.6733 393 0.0248 0.6797

21 0.1819 0.5579 149 0.0511 0.6590 273 0.0328 0.6735 397 0.0246 0.6797

25 0.1643 0.5713 153 0.0501 0.6601 277 0.0324 0.6739 401 0.0244 0.6800

29 0.1503 0.5822 157 0.0492 0.6606 281 0.0320 0.6743 405 0.0243 0.6804

33 0.1391 0.5905 161 0.0483 0.6616 285 0.0318 0.6740 409 0.0241 0.6804

37 0.1298 0.5980 165 0.0475 0.6620 289 0.0313 0.6746 413 0.0239 0.6806

41 0.1217 0.6042 169 0.0467 0.6625 293 0.0310 0.6750 417 0.0237 0.6808

45 0.1147 0.6097 173 0.0459 0.6632 297 0.0308 0.6750 421 0.0235 0.6804

49 0.1087 0.6147 177 0.0451 0.6638 301 0.0305 0.6751 425 0.0234 0.6806

53 0.1032 0.6185 181 0.0444 0.6646 305 0.0301 0.6753 429 0.0233 0.6809

57 0.0987 0.6218 185 0.0437 0.6651 309 0.0299 0.6756 433 0.0231 0.6811

61 0.0944 0.6251 189 0.0430 0.6653 313 0.0296 0.6761 437 0.0229 0.6812

65 0.0905 0.6286 193 0.0423 0.6664 317 0.0292 0.6763 441 0.0227 0.6812

69 0.0871 0.6309 197 0.0417 0.6661 321 0.0290 0.6762 445 0.0225 0.6812

73 0.0836 0.6334 201 0.0411 0.6669 325 0.0287 0.6766 449 0.0224 0.6816

77 0.0808 0.6360 205 0.0405 0.6675 329 0.0284 0.6771 453 0.0223 0.6820

81 0.0780 0.6378 209 0.0399 0.6677 333 0.0282 0.6769 457 0.0221 0.6814

85 0.0755 0.6401 213 0.0394 0.6682 337 0.0279 0.6775 461 0.0219 0.6821

(continued)
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Appendix 6

Simulation study for S2

In this simulation study, we compare Wan et al.’s estimator (2) and our proposed method (11). For Wan et al.’s
method, the three quantities are equally weighted so that the weight to ðq1 þ q3Þ=2 is equal to 0.667. For our new
method, we have shown that the optimal weight of ðq1 þ q3Þ=2 should be about 0.7 for moderate to large n.
Given that the two weights are not far away, we expect that their performance would also be similar. This actually
has been demonstrated by the simulation results in Figure 4 for normal data and in Figure 5 for skewed data,
based on a total of 100,000,000 simulations. From both figures, we note that our new estimator consistently
provides a slightly smaller RMSE than Wan et al.’s estimator, no matter whether n is small or large. We hence
conclude that the new estimator is capable to provide a more accurate estimation of the sample mean for both
normal and skewed distributions for scenario S2.

Table 7. Continued

n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ n w1,optðnÞ w2,optðnÞ

89 0.0732 0.6422 217 0.0389 0.6687 341 0.0277 0.6772 465 0.0218 0.6820

93 0.0712 0.6433 221 0.0383 0.6691 345 0.0274 0.6778 469 0.0217 0.6821

97 0.0691 0.6451 225 0.0379 0.6691 349 0.0271 0.6780 473 0.0215 0.6824

101 0.0671 0.6467 229 0.0374 0.6699 353 0.0269 0.6782 477 0.0214 0.6823

105 0.0654 0.6479 233 0.0370 0.6700 357 0.0267 0.6782 481 0.0212 0.6823

109 0.0636 0.6494 237 0.0364 0.6708 361 0.0265 0.6785 485 0.0211 0.6824

113 0.0621 0.6507 241 0.0360 0.6706 365 0.0263 0.6784 489 0.0210 0.6826

117 0.0606 0.6516 245 0.0355 0.6714 369 0.0261 0.6788 493 0.0208 0.6828

121 0.0593 0.6526 249 0.0351 0.6717 373 0.0259 0.6792 497 0.0207 0.6826

125 0.0578 0.6541 253 0.0346 0.6723 377 0.0256 0.6790 501 0.0206 0.6831

129 0.0566 0.6548
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Figure 4. RMSE of the sample mean estimation for data from normal distribution for scenario S2. The pink line with solid circles

represents Wan et al.’s method, and the light blue line with empty circles represents the new estimator.
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Appendix 7

Simulation study for S3

In this simulation study, we compare the performance of Bland’s estimator (3) and our proposed estimator (15).
Figures 6 and 7 report the results of 100,000 simulations for normal data and skewed data, respectively.
It is evident that our new method provides a more stable performance for both normal and skewed data
compared with Bland’s method. In particular, when n increases, the RMSE of Bland’s estimator increases
rapidly whereas our estimator provides a relatively stable RMSE that is more close to 1. In view of this, we
conclude that our new estimator has provided a more reliable estimate of the sample mean for both normal and
skewed distributions for scenario S3.
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Figure 5. RMSE of the sample mean estimation for data from non-normal distributions for scenario S2. The pink line with solid

circles represents Wan et al.’s method, and the light blue line with empty circles represents the new estimator.
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Figure 6. RMSE of the sample mean estimation for data from normal distribution for scenario S3. The pink line with solid circles

represents Bland’s method, and the light blue line with empty circles represents the new estimator.
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