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a b s t r a c t

In this paper we propose James–Stein type estimators for variances raised to a fixed power
by shrinking individual variance estimators towards the arithmetic mean. We derive and
estimate the optimal choices of shrinkage parameters under both the squared and the
Stein loss functions. Asymptotic properties are investigated under two schemes when
either the number of degrees of freedom of each individual estimate or the number of
individuals approaches to infinity. Simulation studies indicate that the performance of
various shrinkage estimators depends on the loss function, and the proposed estimator
outperforms existing methods under the squared loss function.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Z1, . . . , Zp be unbiased estimators of the variances σ 2
1 , . . . , σ 2

p . Furthermore, assume that Zi can be represented as
Zi = σ 2

i χ2
ν,i/ν for i = 1, . . . , pwhere χ2

ν,i are independent and identically distributed chi-squared random variables with ν

degrees of freedom. We considerthe problem of estimating σ2t
= (σ 2t

1 , . . . , σ 2t
p ) for any t ≠ 0 under both the squared loss

function

LQ (σ 2, σ̂ 2) =


σ̂ 2

σ 2
− 1

2

, (1)

and the Stein loss function [7]

LT (σ 2, σ̂ 2) =
σ̂ 2

σ 2
− ln


σ̂ 2

σ 2


− 1. (2)

The Stein loss function is also known as the entropy loss or Kullback–Leibler loss function [9]. Note that the estimation of
variances σ 2

i or their reciprocals σ−2
i are special cases with t = 1 or t = −1.

One of the motivations for the above problem is the detection of differentially expressed genes in microarray
experiments. In this case Zi corresponds to the sample variance of gene i. Typically the number of genes p is large and the
number of degrees of freedom ν is small. Therefore, the conventional gene-by-gene t-test has lowpower [4,15]. This problem
is quite common in high-dimensional data, and various methods have been proposed to improve the variance estimation
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[2,8,14,16,13,4,6,10,15]. It is also known that improved variance estimation can substantially improve classification accuracy
for high-dimensional low-sample-size data [12,11].

The basic technique is to borrow information across estimates of variances, an idea originated from the James–Stein
estimator of means [7]. In particular, Cui et al. [4] proposed shrinkage estimators by applying the James–Stein estimator to
variances on the logarithmic scale. Tong andWang [15] considered optimal shrinkage estimators within a general family of
estimators, also on the logarithmic scale. They showed that the sample variances are inadmissible.

In this paper, rather than on the logarithmic scale, we consider shrinkage estimation on the original scale. Consequently,
individual variance estimators are shrunk towards the arithmetic mean rather than the geometric mean. Let Zi(t) = h(t)Z t

i
where h(t) = 0(ν/2)(ν/2)t/0(ν/2 + t) and 0(·) is the gamma function. For any nonzero t > −ν/2, Zi(t) is an unbiased
estimator of σ 2t

i [15]. When σ 2
i = σ 2 for all i, Z̄(t) =

p
i=1 Zi(t)/p is an unbiased estimator of σ 2t . Therefore, we consider

the following shrinkage estimator for σ 2t
i ,

σ̂ 2t
i = αZ̄(t) + βZi(t), i = 1, . . . , p, (3)

where α ≥ 0 and β ≥ 0 are the shrinkage parameters with α + β > 0. It is clear that the above shrinkage estimator is an
extension of the James–Stein estimator for multiple means to multiple variances. There is no shrinkage when α = 0 and
β = 1. On the other hand, all variance estimates are shrunken to the bias-corrected arithmetic mean Z̄(t) when α = 1
and β = 0. Note that we do not require α + β = 1. Nevertheless, it is easy to check that, for any t > −ν/2, the total biasp

i=1{E(σ̂
2t
i )−σ 2t

i } equals zero if and only if α+β = 1. Therefore, wewill also consider the special case when α+β = 1. In
what follows, under both the squared and the Stein loss functions, we study the optimal shrinkage estimators and estimate
the optimal shrinkage parameters.

The remainder of the paper is organized as follows. In Sections 2 and 3, we derive the optimal shrinkage estimators
for variances under the squared and the Stein loss functions, respectively. We also propose estimators for the optimal
shrinkage parameters and investigate their asymptotic properties. We then conduct simulations in Section 4 to evaluate
the performance of the proposed estimators and compare them to some existing methods.

2. Optimal shrinkage estimator under the squared loss

2.1. Optimal shrinkage estimator

Let σ̄ 2ξ
=
p

i=1 σ
2ξ
i /p for any ξ and σ̂

2t
= (σ̂ 2t

1 , . . . , σ̂ 2t
p ). It is straightforward to show that, under the squared loss

function (1), the average risk of σ̂ 2t
i is

RQ (α, β; σ2t) ,
1
p

p
i=1

ELQ (σ 2t
i , σ̂ 2t

i )

= A2(t)α2
+ A3(t)β2

+ 2A4(t)αβ − 2A1(t)α − 2β + 1, (4)
where A1(t) = σ̄ 2t σ̄−2t , A2(t) = σ̄−4t

[σ̄ 4t
{A3(t) − 1}/p + (σ̄ 2t)2], A3(t) = 0(ν/2)0(ν/2 + 2t)/02(ν/2 + t), and

A4(t) = {A3(t) − 1}/p + A1(t). Note that σ̄ 2t , σ̄−2t , σ̄ 4t and σ̄−4t correspond to σ̄ 2ξ with ξ = t, ξ = −t, ξ = 2t and
ξ = −2t respectively. In addition, RQ (α, β; σ2t) is a positive definite quadratic function of α and β .

Theorem 1. For any fixed p ≥ 2, ν , and nonzero t > −ν/4, RQ (α, β; σ2t) is a strictly convex function of α and β with the
unique minimum point at

α∗

Q1
=

A1(t)A3(t) − A4(t)
A2(t)A3(t) − A2

4(t)
and β∗

Q1
=

A2(t) − A1(t)A4(t)
A2(t)A3(t) − A2

4(t)
. (5)

The proof of Theorem 1 is omitted since it is straightforward. α∗

Q1
and β∗

Q1
are the optimal shrinkage parameters. Denote the

corresponding optimal shrinkage estimator as σ̂ 2t
i,Q1

= α∗

Q1
Z̄(t) + β∗

Q1
Zi(t).

A1(t) ≥ 1 by the Cauchy inequality and A3(t) > 1 for any t > −ν/4 [1]. Then A1(t)A3(t) − A4(t) = {A3(t) − 1}{A1(t) −

1/p} > 0 for any p ≥ 2. Furthermore, A2(t)A3(t) − A2
4(t) > 0 since it is the determinant of the Hessian matrix of the

strictly convex function RQ (α, β; σ2t). Therefore, α∗

Q1
> 0 and σ̂ 2t

i,Q1
has a smaller average risk than the original estimator

Zi(t). When σ 2
i = σ 2 for all i, we have A1(t) = 1 and A2(t) = A4(t) = {A3(t) − 1}/p + 1. Plugging them into (5) leads to

α∗

Q1
= [{A3(t)−1}/p+1]−1 and β∗

Q1
= 0. Now since A3(t) > 1 for any t > −ν/4, we have α∗

Q1
< 1. Therefore, σ̂ 2t

i,Q1
also has

a smaller average risk than the pooled variance estimator Z̄(t) when σ 2
i = σ 2 for all i. The following theorem indicates that

there is no need to borrow information across estimates of variances when the degrees of freedom ν approaches to infinity.

Theorem 2. For any fixed p ≥ 2 and nonzero t, as ν → ∞, we have
(i) α∗

Q1
→ 0 and β∗

Q1
→ 1 when σ 2

i are not all the same,
(ii) α∗

Q1
→ 1 and β∗

Q1
= 0 when σ 2

i = σ 2 for all i.
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The proof of Theorem2 is given in Appendix A.We now consider the optimal shrinkage under the constraint ofα+β = 1.
Substituting β = 1 − α in (4), we have RQ (α, 1 − α; σ2t) = {A2(t) + A3(t) − 2A4(t)}α2

− 2{A1(t) + A3(t) − A4(t) −

1}α + A3(t) − 1 for 0 ≤ α ≤ 1. Then the optimal shrinkage estimator σ̂ 2t
i,Q2

= α∗

Q2
Z̄(t) + (1 − α∗

Q2
)Zi(t), where

α∗

Q2
= (1 − 1/p){A3(t) − 1}/{A2(t) + A3(t) − 2A4(t)}. It is not difficult to show that α∗

Q2
≤ 1. Since A3(t) > 1 for any

t > −ν/4 and A2(t)+A3(t)−2A4(t) > 0, then α∗

Q2
> 0 for any p ≥ 2. This implies that σ̂ 2t

i,Q2
has a smaller average risk than

the original estimator Zi(t). When σ 2
i = σ 2 for all i, noting that A1(t) = 1 and A2(t) = A4(t), we have α∗

Q2
= 1 regardless of

the value of ν. As a consequence, σ̂ 2t
i,Q2

reduces to the pooled variance estimator Z̄(t). This is different from the unconstrained
situation where α∗

Q1
< 1. Finally, for any fixed p ≥ 2 and nonzero t , as ν → ∞, we have α∗

Q2
→ 0 when σ 2

i are not all the
same.

2.2. Estimation of the optimal shrinkage parameters

The optimal shrinkage parametersα∗

Q1
and β∗

Q1
depend on the unknown quantities σ̄ 2ξ where ξ = t, −t, 2t , and−2t . We

estimate σ̄ 2ξ by Z̄(ξ) =
p

i=1 Zi(ξ)/p. Correspondingly, let Ã1(t) = Z̄(t)Z̄(−t), Ã2(t) = [Z̄(2t){A3(t)−1}/p+Z̄2(t)]Z̄(−2t),
and Ã4(t) = {A3(t)−1}/p+Z̄(t)Z̄(−t) be the estimates of A1(t), A2(t), and A4(t), respectively. Thenwe estimate the optimal
shrinkage estimators by

α̃∗

Q1
=

Ã1(t)A3(t) − Ã4(t)

Ã2(t)A3(t) − Ã2
4(t)

and β̃∗

Q1
=

Ã2(t) − Ã1(t)Ã4(t)

Ã2(t)A3(t) − Ã2
4(t)

.

The estimated optimal shrinkage estimator under the squared loss function is then σ̃ 2t
i,Q1

= α̃∗

Q1
Z̄(t) + β̃∗

Q1
Zi(t).

Similarly, for α∗

Q2
under the constraint of α + β = 1, we have α̃∗

Q2
= (1 − 1/p){A3(t) − 1}/{Ã2(t) + A3(t) − 2Ã4(t)}

and σ̃ 2t
i,Q2

= α̃∗

Q2
Z̄(t)+ (1− α̃∗

Q2
)Zi(t). The following theorem summarizes the asymptotic behavior of the estimated optimal

shrinkage parameters as ν → ∞.

Theorem 3. For any fixed p ≥ 2 and nonzero t, as ν → ∞, we have

(i) α̃∗

Q1

a.s.
→ 0 and β̃∗

Q1

a.s.
→ 1 when σ 2

i are not all the same,

(ii) α̃∗

Q2

a.s.
→ 0 when σ 2

i are not all the same.

The proof of Theorem 3 is given in Appendix B. For high-dimensional data, it is common that ν is relatively small and p
is large. In what follows we investigate the asymptotic behavior of the estimated optimal shrinkage parameters as p → ∞.
We assume that σ 2

i are i.i.d. random variables from a certain distribution F . Denote µξ = Eσ 2ξ
1 as the ξ -th moment of F .

Theorem 4. For any fixed ν and nonzero |t| < ν/4, assume that σ 2
i

i.i.d.
∼ F with 0 < µξ < ∞ for ξ = 2t and −2t. Then

(i) α̃∗

Q1
− α∗

Q1

a.s.
→ 0 and β̃∗

Q1
− β∗

Q1

a.s.
→ 0 as p → ∞,

(ii) α̃∗

Q2
− α∗

Q2

a.s.
→ 0 as p → ∞.

The proof of Theorem 4 is given in Appendix C.

3. Optimal shrinkage estimator under the Stein loss

3.1. Optimal shrinkage estimator

Under the Stein loss function (2), the average risk of σ̂ 2t
i is given as

RT (α, β; σ2t) ,
1
p

p
i=1

ELT (σ 2t
i , σ̂ 2t

i )

= A1(t)α + β −
1
p

p
i=1

E ln{αZ̄(t) + βZi(t)} + ln σ 2t
i − 1. (6)

Note that E ln{αZ̄(t) + βZi(t)} does not have a closed form as it involves the expectation of the logarithm of a linear
combination of independent but non-identically distributed chi-squared random variables. By Beckenbach and Bellman [3],
we have

1
α + β


α

p

p
i=1

ln Zi(t) + β ln Zi(t)


≤ ln{αZ̄(t) + βZi(t)} ≤ αZ̄(t) + βZi(t).
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Since both Zi(t) and ln Zi(t) are integrable for t > −ν/2, then E ln{αZ̄(t)+βZi(t)} exists for any given α and β . Furthermore,
since − ln x is a strictly convex function of x and αZ̄(t) + βZi(t) is a linear function of α and β , then −E ln{αZ̄(t) + βZi(t)}
is a strictly convex function of α and β . Therefore, RT (α, β; σ2t) is a strictly convex function of α and β .

Lemma 1. For any α ≥ 0, β ≥ 0, and α + β > 0, the minimum of RT (α, β; σ2t) is obtained on the line A1(t)α + β = 1.

The proof of Lemma 1 is given in Appendix D. Replacing β by 1 − A1(t)α in (6), the average risk reduces to

RT1(α; σ2t) = −
1
p

p
i=1

E ln[αZ̄(t) + {1 − A1(t)α}Zi(t)] +
1
p

p
i=1

ln σ 2t
i ,

where 0 ≤ α ≤ 1/A1(t).

Theorem 5. For any fixed p ≥ 2, ν , and nonzero |t| < ν/2, RT1(α; σ2t) is a strictly convex function of α on [0, 1/A1(t)] that
satisfies

(i) R′

T1
(α; σ2t)|α=0 < 0,

(ii) R′

T1
(α; σ2t)|α=1/A1(t) ≥ 0 where the equality holds if and only if σ 2

i = σ 2 for all i.

The proof of Theorem 5 is given in Appendix E. Let α∗

T1
= argminα∈[0,1/A1(t)]RT1(α; σ2t) be the optimal shrinkage

parameter under the Stein loss function. By Theorem5, there exists a uniqueα∗

T1
in (0, 1/A1(t)] that satisfies R′

T1
(α; σ2t) = 0.

The optimal shrinkage estimator under the Stein loss function is then σ̂ 2t
i,T1

= α∗

T1
Z̄(t) + {1 − A1(t)α∗

T1
}Zi(t). Since α∗

T1
> 0,

then σ̂ 2t
i,T1

has a smaller average risk than Zi(t). When σ 2
i = σ 2 for all i, it is seen that α∗

T1
= 1/A1(t) = 1. Consequently σ̂ 2t

i,T1
reduces to the pooled variance estimator Z̄(t). The following theorem indicates that there is no need to borrow information
when ν is large.

Theorem 6. For any fixed p ≥ 2 and nonzero t, as ν → ∞, we have

(i) α∗

T1
→ 0 when σ 2

i are not all the same,
(ii) RT1(α; σ2t) tends to a constant function of α when σ 2

i = σ 2 for all i.

The proof of Theorem 6 is omitted due to its simplicity. We now consider the optimal shrinkage under the constraint of
α + β = 1. Substituting β = 1 − α in (6), we have

RT2(α; σ2t) = α{A1(t) − 1} −
1
p

p
i=1

E ln{αZ̄(t) + (1 − α)Zi(t)} +
1
p

p
i=1

ln σ 2t
i

for 0 ≤ α ≤ 1. Denote the optimal shrinkage parameter under the constraint of α+β = 1 as α∗

T2
= argminα∈[0,1]RT2(α; σ2t)

and the corresponding optimal shrinkage estimator as σ̂ 2t
i,T2

= α∗

T2
Z̄(t) + (1 − α∗

T2
)Zi(t). Similarly it can be shown that

for any fixed p ≥ 2, ν, and nonzero |t| < ν/2, RT2(α; σ2t) is a strictly convex function of α on [0, 1] that satisfies
(i) R′

T2
(α; σ2t)|α=0 < 0, and (ii) R′

T2
(α; σ2t)|α=1 ≥ 0 where the equality holds if and only if σ 2

i = σ 2 for all i. Therefore,
there exists a unique α∗

T2
in (0, 1] that satisfies R′

T2
(α; σ2t) = 0. Since α∗

T2
> 0, σ̂ 2t

i,T2
has a smaller average risk than the

original estimator Zi(t). When σ 2
i = σ 2 for all i, it can be shown that α∗

T2
= 1. Consequently σ̂ 2t

i,T2
reduces to the pooled

variance estimator Z̄(t). Finally, for any fixed p ≥ 2 and nonzero t , as ν → ∞ we have (i) α∗

T2
→ 0 when σ 2

i are not all the
same, and (ii) RT2(α; σ2t) tends to a constant function of α when σ 2

i = σ 2 for all i.

3.2. Estimation of the optimal shrinkage parameters

The optimal shrinkage parameter α∗

T1
is the unique solution to

R′

T1(α; σ2t) = −
1
p

p
i=1

E


Z̄(t) − A1(t)Zi(t)
αZ̄(t) + {1 − A1(t)α}Zi(t)


= 0

in (0, 1/A1(t)]. We estimate A1(t) by Ã1(t) = Z̄(t)Z̄(−t), and R′

T1
(α; σ2t) by

R̂′

T1(α; σ2t) = −
1
p

p
i=1

Z̄(t) − Ã1(t)Zi(t)

αZ̄(t) + {1 − Ã1(t)α}Zi(t)
.

It is easy to verify that R̂′

T1
(α; σ2t)|α=0 = Z̄(t)

p
i=1 Z

−t
i {h(−t)−1/h(t)}/p < 0, R̂′

T1
(α; σ2t)|α=1/Ã1(t)

= Ã1(t){Ã1(t)−1}, and
R̂′′

T2
(α; σ2t) > 0 for any α ∈ (0, 1/Ã1(t)]. Note that R̂′

T1
(α; σ2t)|α=1/Ã1(t)

is not guaranteed to be non-negative. Nevertheless,
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Fig. 1. Boxplots of the ratios of AR(α̃∗

Q2
)/AR(α̃∗

Q1
) under the squared loss function. Rows from top to bottom correspond to the shape parameter γ with

values 3, 6 and 9, respectively. Columns from left to right correspond to the mean parameter µ with values 1/3, 1 and 3, respectively.

we have Ã1(t)
a.s.
→ A1(t) ≥ 1 as ν → ∞ and Ã1(t)

a.s.
→ µtµ−t ≥ 1 as p → ∞. Therefore, R̂′

T1
(α; σ2t)|α=1/Ã1(t)

is non-negative
when either ν or p is large. Consequently, there is a unique α in (0, 1/Ã1(t)] that satisfies R̂′

T1
(α; σ2t) = 0 when ν or p is

large.We denote the solution as α̃∗

T1
, and the estimated optimal shrinkage estimator by σ̃ 2t

i,T1
= α̃∗

T1
Z̄(t)+{1− Ã1(t)α̃∗

T1
}Zi(t).

Similarly, for α∗

T2
under the constraint of α +β = 1, the estimated optimal shrinkage parameter α̃∗

T2
is derived by solving

the equation R̂′

T2
(α; σ2t) = 0 where

R̂′

T2(α; σ2t) = Ã1(t) − 1 −
1
p

p
i=1


Z̄(t) − Zi(t)

αZ̄(t) + (1 − α)Zi(t)


.

The corresponding optimal shrinkage estimator is denoted as σ̃ 2t
i,T2

= α̃∗

T2
Z̄(t) + (1 − α̃∗

T2
)Zi(t). The following theorems

summarize the asymptotic properties of the estimated optimal shrinkage parameters under the Stein loss function when
ν → ∞ or p → ∞.

Theorem 7. For any fixed p ≥ 2 and nonzero t, as ν → ∞, we have α̃∗

T1
a.s.
→ 0 and α̃∗

T2
a.s.
→ 0 when σ 2

i are not all the same.
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Fig. 2. Boxplots of the ratios of AR(α̃∗

T2
)/AR(α̃∗

T1
) under the Stein loss function. Rows from top to bottom correspond to the shape parameter γ with values

3, 6 and 9, respectively. Columns from left to right correspond to the mean parameter µ with values 1/3, 1 and 3, respectively.

Theorem 8. For any fixed ν and nonzero |t| < ν/2, assume that σ 2
i

i.i.d.
∼ F with 0 < µξ < ∞ for ξ = 2t and −2t. In addition,

assume that E[
p

i=1 Z
2
i (t)/{pZ̄(t)}]2 < ∞ and E{A1(t) − µtµ−t}

2
→ 0 as p → ∞. Then, as p → ∞,

(i) R̂′

T1
(α; σ2t) − R′

T1
(α; σ2t)

a.s.
→ 0 uniformly for α ∈ (0, 1/cµtµ−t ] with any c > 1. In addition, α̃∗

T1
− α∗

T1
a.s.
→ 0 as p → ∞.

(ii) R̂′

T2
(α; σ2t) − R′

T2
(α; σ2t)

a.s.
→ 0 uniformly for α ∈ (0, 1]. In addition, α̃∗

T2
− α∗

T2
a.s.
→ 0 as p → ∞.

The proofs of Theorems 7 and 8 are given in Appendices F and G, respectively.

4. Simulation study

As in [15], we set p = 5000 in this section. We simulate σ 2
i for i = 1, . . . , p from a gamma distribution with shape

parameter γ and mean parameter µ. We consider all nine combinations of γ = 3, 6 and 9 and µ = 1/3, 1 and 3. For each
given σ 2

i , we simulate ν + 1 observations from N(θi, σ
2
i ) where θi is a random sample from N(0, 1), and then compute Zi as

the sample variance based on these ν + 1 observations. Based on Theorems 4 and 8, we need ν > 4|t| for the squared loss
and ν > 2|t| for the Stein loss. For t = 1 we need ν > 4 and ν > 2 for the squared and the Stein losses respectively. The
estimates of shrinkage parameters are unstable when ν = 5 under the squared loss and when ν = 3 under the Stein loss.
Therefore, we consider ν = 6, 7, . . . , 12 for the estimation under the squared loss function, and ν = 4, 5, . . . , 10 for the
estimation under the Stein loss function.
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Fig. 3. Plots of log average risks for estimating σ 2
i under the squared loss function. Lines marked with ‘‘1’’, ‘‘2’’ and ‘‘3’’ correspond to the CHQBC estimator,

the TW estimator under the squared loss function, and σ̃ 2
i,Q1

, respectively. Rows from top to bottom correspond to the shape parameter γ with values 3, 6
and 9, respectively. Columns from left to right correspond to the mean parameter µ with values 1/3, 1 and 3, respectively.

For each setting, we repeat the simulation 100 times and then compute the following average risk

AR =
1

100p

100
r=1

p
i=1

L(σ 2
ir , σ̂

2
ir ), (7)

where r represents simulation replications and L can be either the squared or the Stein loss function. To save space, we
present the comparison results for estimating σ 2

i (i.e. t = 1) only. Comparative results for other values of t are similar.
We present results from two simulations. The purpose of our first simulation is to evaluate the loss of efficiency due to the

constraint α + β = 1. Let AR(α̃∗

Q1
), AR(α̃∗

Q2
), AR(α̃∗

T1
) and AR(α̃∗

T2
) be the average risks computed using (7) for the estimated

optimal estimators σ̃ 2
i,Q1

, σ̃ 2
i,Q2

, σ̃ 2
i,T1

and σ̃ 2
i,T2

respectively. To evaluate the amount of efficiency loss under the constraint of
α + β = 1, we plot the ratios of AR(α̃∗

Q2
)/AR(α̃∗

Q1
) and AR(α̃∗

T2
)/AR(α̃∗

T1
) in Figs. 1 and 2 for the squared and the Stein loss

functions, respectively. We note that the ratios are all greater than 1 as expected. That is, the shrinkage variance estimators
without the constraint have smaller risks than those with the constraint. Under the squared loss, the median efficiency loss
of AR(α̃∗

Q2
) over AR(α̃∗

Q1
) has a range between 19% and 25%. Under the Stein loss, the median efficiency loss of AR(α̃∗

T2
) over

AR(α̃∗

T1
) has a range between 4% and 12%. It is interesting to note that the median efficiency loss under the squared loss



T. Tong et al. / Journal of Multivariate Analysis 107 (2012) 232–243 239

Fig. 4. Plots of log average risks for estimating σ 2
i under the Stein loss function. Lines marked with ‘‘1’’, ‘‘2’’ and ‘‘3’’ correspond to the CHQBC estimator,

the TW estimator under the Stein loss function, and σ̃ 2
i,T1

, respectively. Rows from top to bottom correspond to the shape parameter γ with values 3, 6 and
9, respectively. Columns from left to right correspond to the mean parameter µ with values 1/3, 1 and 3, respectively.

function remains constant over different values of ν while themedian efficiency loss under the Stein loss function decreases
as ν increases.

The purpose of our second simulation is to compare the performance of the proposed estimators σ̃ 2
i,Q1

and σ̃ 2
i,T1

with
the shrinkage estimators in [4,15] which are referred to as the CHQBC and TW estimators, respectively. Note that both the
CHQBC and TW estimators are based on the logarithmic scale which shrink towards the geometric mean. All the shrinkage
estimators perform considerably better than the original estimator Zi. For simplicity, we will not present the average risk of
Zi. Figs. 3 and 4 show the average risks on the logarithmic scale under the squared and the Stein loss functions, respectively.
We note that, except for very small ν, the proposed estimator σ̃ 2

i,Q1
has the smallest average risk in most settings under the

squared loss. Under the Stein loss function, all three estimators have similar performance except for the case when γ = 3
where the proposed estimator σ̃ 2

i,T1
performs slightly worse than the CHQBC and TW estimators.
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Appendix A. Proof of Theorem 2

For any fixed p ≥ 2 and nonzero t , as ν → ∞, we have A3(t) → 1, A2(t) → (σ̄ 2t)2σ̄−4t , and A4(t) → A1(t).
This leads to A1(t)A3(t) − A4(t) → 0 and {A2(t) − A1(t)A4(t)} − {A2(t)A3(t) − A2

4(t)} → 0 as ν → ∞. In addition,
A2(t)A3(t) − A2

4(t) → C as ν → ∞, where C = (σ̄ 2t)2
p

i=1


j>i(σ
−2t
i − σ−2t

j )2/p2 with p ≥ 2. It is seen that C > 0 as
long as σ 2

i are not all the same. Therefore, α∗

Q1
→ 0 and β∗

Q1
→ 1 when σ 2

i are not all the same. When σ 2
i = σ 2 for all i, we

have α∗

Q1
= [{A3(t) − 1}/p + 1]−1

→ 1 and β∗

Q1
= 0 as ν → ∞.

Appendix B. Proof of Theorem 3

We first prove Theorem3(i). For any fixed p ≥ 2 and nonzero t , as ν → ∞, we have Zi(t)
a.s.
→ σ 2t

i and Zi(−t)
a.s.
→ σ−2t

i . This
leads to Z̄(t)

a.s.
→ σ̄ 2t , Z̄(−t)

a.s.
→ σ̄−2t , and Ã1(t)

a.s.
→ A1(t) as ν → ∞. Similarly, we have Ã2(t)

a.s.
→ (σ̄ 2t)2σ̄−4t , A3(t) → 1,

and Ã4(t)
a.s.
→ A1(t) as ν → ∞. Therefore, Ã1(t)A3(t) − Ã4(t)

a.s.
→ 0 and Ã2(t)A3(t) − Ã2

4(t)
a.s.
→ C as ν → ∞ where C =

(σ̄ 2t)2
p

i=1


j>i(σ
−2t
i −σ−2t

j )2/p2 ≥ 0. Note that C = 0 if and only if σ 2
i = σ 2 for all i. Therefore, α̃∗

Q1

a.s.
→ 0when σ 2

i are not

all the same. In addition, noting that {Ã2(t)−Ã1(t)Ã4(t)}−{Ã2(t)A3(t)−Ã2
4(t)} = Ã2(t){1−A3(t)}−Ã4(t){Ã1(t)−Ã4(t)}

a.s.
→ 0

as ν → ∞, we have β̃∗

Q1

a.s.
→ 1 when σ 2

i are not all the same.
The proof of Theorem 3(ii) is similar and thus is omitted.

Appendix C. Proof of Theorem 4

We prove Theorem 4(i) only. By the strong law of large numbers (SLLN), as p → ∞, we have A1(t)
a.s.
→ µtµ−t , A2(t)

a.s.
→

µ2
t µ−2t , and A4(t)

a.s.
→ µtµ−t . Then for any fixed ν and nonzero t , as p → ∞,

α∗

Q1

a.s.
→

µtµ−tA3(t) − µtµ−t

µ2
t µ−2tA3(t) − µ2

t µ
2
−t

=
A3(t) − 1

µtµ−t{A3(t)µ−2t/µ
2
−t − 1}

.

Noting that µ−2t/µ
2
−t ≥ 1 and A3(t) > 1, we have 0 < α∗

Q1
< 1/(µtµ−t).

For any ξ > −ν/2, Zi(ξ) are i.i.d. random variables with EZi(ξ) = E[E{Zi(ξ)|σ 2
i }] = Eσ 2ξ

i = µξ . By SLLN, Z̄(ξ)
a.s.
→ µξ as

p → ∞. Therefore, for any fixed ν and nonzero |t| < ν/4, we have Ã1(t)
a.s.
→ µtµ−t , Ã2(t)

a.s.
→ µ2

t µ−2t , and Ã4(t)
a.s.
→ µtµ−t

as p → ∞. This implies that α∗

Q1
and α̃∗

Q1
have the same limit. Thus, by the Slutsky theorem, we have α̃∗

Q1
− α∗

Q1

a.s.
→ 0 as

p → ∞. Finally, by the same arguments we have β̃∗

Q1
− β∗

Q1

a.s.
→ 0 as p → ∞.

Appendix D. Proof of Lemma 1

Taking the first partial derivatives with respect to α and β yields

∂

∂α
RT (α, β; σ2t) = A1(t) −

1
p

p
i=1

E


Z̄(t)
αZ̄(t) + βZi(t)


set
= 0, (8)

∂

∂β
RT (α, β; σ2t) = 1 −

1
p

p
i=1

E


Zi(t)
αZ̄(t) + βZi(t)


set
= 0. (9)

Multiplying (8) and (9) by α and β respectively, and then adding them together, we have A1(t)α + β = 1. Note that
RT (α, β; σ2t) is a strictly convex function of α and β . Thus if the minimum value of RT (α, β; σ2t) is inside the open set
{(α, β) : α > 0, β > 0}, it must satisfy A1(t)α + β = 1.

We now consider the case when the minimum value of RT (α, β; σ2t) locates on the boundary. First consider the case
when α = 0 and β > 0. Then RT (0, β; σ2t) = β − lnβ −

p
i=1 E ln Zi(t)/p +

p
i=1 ln σ 2t

i /p − 1. Taking the first
derivative, we have (∂/∂β)RT (0, β; σ2t) = 1 − 1/β set

= 0. This leads to β = 1. Since (∂2/∂β2)RT (0, β; σ2t) = 1/β2 > 0,
then RT (0, β; σ2t) is minimized at (α, β) = (0, 1). Next consider the case when α > 0 and β = 0, RT (α, 0; σ2t) =

A1(t)α−lnα−E ln Z̄(t)+
p

i=1 ln σ 2t
i /p−1. Taking the first derivative,wehave (∂/∂α)RT (α, 0; σ2t) = A1(t)−1/α set

= 0. This
leads to α = 1/A1(t). Since (∂2/∂α2)RT (α, 0; σ2t) = 1/α2 > 0, then RT (α, 0; σ2t) is minimized at (α, β) = (1/A1(t), 0).
We note that both (α, β) = (0, 1) and (α, β) = (1/A1(t), 0) satisfy A1(t)α + β = 1.
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Appendix E. Proof of Theorem 5

We first prove Theorem 5(i). The first derivative of RT1(α; σ2t) evaluated at α = 0

R′

T1(α; σ2t)|α=0 = −
1
p

p
i=1

E

Z̄(t) − A1(t)Zi(t)

Zi(t)


= A1(t) −

1
p

p
i=1

E

Z̄(t)
Zi(t)


.

Noting that Zi(t) are independent of each other, we have

E

Z̄(t)
Zi(t)


=

1
p


j≠i

EZj(t)EZ−1
j (t) +

1
p

=


1
p

p
j=1

σ 2t
j


K1(t)
σ 2t
i


+

1
p
{1 − K1(t)},

where EZ−1
i (t) = K1(t)/σ 2t

i and K1(t) = 0 (ν/2 + t) 0 (ν/2 − t) /02 (ν/2). Then

1
p

p
i=1

E

Z̄(t)
Zi(t)


= K1(t)A1(t) +

1
p

{1 − K1(t)} .

Consequently R′

T1
(α; σ2t)|α=0 = {1 − K1(t)}{A1(t) − 1/p}. Finally, noting that A1(t) ≥ 1 and K1(t) > 1 for any nonzero

|t| < ν/2, we have R′

T1
(α; σ2t)|α=0 < 0 for any p ≥ 2.

We now prove Theorem 5(ii). The first derivative of RT1(α; σ2t) evaluated at α = 1/A1(t)

R′

T1(α; σ2t)|α=1/A1(t) = −
1
p

p
i=1

E

Z̄(t) − A1(t)Zi(t)

Z̄(t)/A1(t)


= A2

1(t) − A1(t).

Note that A1(t) ≥ 1. We have R′

T1
(α; σ2t)|α=1/A1(t) ≥ 0 where the equality holds if and only if σ 2

i = σ 2 for all g .

Appendix F. Proof of Theorem 7

It has been shown in Appendix B that, for any fixed p ≥ 2 and nonzero |t| < ν/2, Zi(t)
a.s.
→ σ 2t

i , Z̄(t)
a.s.
→ σ̄ 2t , and

Ã1(t)
a.s.
→ A1(t) as ν → ∞. Noting that K1(t) → 1 as ν → ∞, we have

R̂′

T1(α; σ2t)|α=0 = −
1
p

p
i=1

Z̄(t) − Ã1(t)Zi(t)
Zi(t)

= Ã1(t){1 − K1(t)}
a.s.
→ 0,

and

R̂′′

T1(α; σ2t) =
1
p

p
i=1


Z̄(t) − Ã1(t)Zi(t)

αZ̄(t) + {1 − Ã1(t)α}Zi(t)

2

a.s.
→

1
p

p
i=1


σ̄ 2t

− A1(t)σ 2t
i

ασ̄ 2t + {1 − αA1(t)}σ 2t
i

2
≥ 0,

where the equality holds if and only if σ 2
i = σ 2 for all i. This implies that, as ν → ∞, R̂′

T1
(α; σ2t) is a strictly increasing

function of α with a minimum value at α = 0 when σ 2
i are not all the same. Therefore, α̃∗

T1
a.s.
→ 0 as ν → ∞ when σ 2

i are
not all the same.

The proof of α̃∗

T2
a.s.
→ 0 is similar and thus is omitted.

Appendix G. Proof of Theorem 8

We prove Theorem 8(i) only. Let

Hi(Z̄(t), α, Ã1(t)) = −
Z̄(t) − Ã1(t)Zi(t)

αZ̄(t) + {1 − Ã1(t)α}Zi(t)
,

Hi(Z̄(t), α, A1(t)) = −
Z̄(t) − A1(t)Zi(t)

αZ̄(t) + {1 − A1(t)α}Zi(t)
,

Hi(µt , α, µtµ−t) = −
µt − µtµ−tZi(t)

αµt + {1 − µtµ−tα}Zi(t)
.
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For a fixed ν and α ∈ (0, 1/cµtµ−t ] with c > 1, we haveR̂′

T1(α; σ2t) − R′

T1(α; σ2t)

 ≤ I + II + III,

where

I =

1p
p

i=1

Hi(Z̄(t), α, Ã1(t)) −
1
p

p
i=1

Hi(µt , α, µtµ−t)

 ,
II =

1p
p

i=1

Hi(µt , α, µtµ−t) −
1
p

p
i=1

EHi(µt , α, µtµ−t)

 ,
III =

1p
p

i=1

EHi(µt , α, µtµ−t) −
1
p

p
i=1

EHi(Z̄(t), α, A1(t))

 .
It suffices to show that I

a.s.
→ 0, II

a.s.
→ 0, and III

a.s.
→ 0 uniformly for α ∈ (0, 1/cµtµ−t ] as p → ∞.

For I, we have

I =

1p
p

i=1

Hi(Z̄(t), α, Ã1(t)) −
1
p

p
i=1

Hi(µt , α, µtµ−t)


=

1p
p

i=1

{Ã1(t) − µtµ−t}Z2
i (t) + {Z̄(t) − µt}Zi(t)
D1D2


≤ |Ã1(t) − µtµ−t |

1
p

p
i=1

Z2
i (t)
D1D2

+
Z̄(t) − µt

 1
p

p
i=1

Zi(t)
D1D2

, (10)

where D1 = αZ̄(t) + {1 − Ã1(t)α}Zi(t) and D2 = αµt + {1 − µtµ−tα}Zi(t). Note that Ã1(t)
a.s.
→ µtµ−t as p → ∞. There

exists an N1 > 0 such that for any p > N1, Ã1(t) < cµtµ−t for any given c > 1. When α ∈ (1/2cµtµ−t , 1/cµtµ−t ], we
have D1 ≥ αZ̄(t) and D2 ≥ αµt for any p > N1. Consequently, as p → ∞,

1
p

p
i=1

Z2
i (t)
D1D2

≤
(2cµtµ−t)

2

µt Z̄(t)
1
p

p
i=1

Z2
i (t)

a.s.
→

h2(t)
h(2t)

4c2µ2tµ
2
−t < ∞.

When α ∈ (0, 1/2cµtµ−t ], we have D1 ≥ Zi(t)/2 and D2 ≥ (1 − 1/2c)Zi(t) for any p > N1. Consequently,

1
p

p
i=1

Z2
i (t)
D1D2

≤
4c

2c − 1
< ∞.

Therefore, for any α ∈ (0, 1/cµtµ−t ] with c > 1,
p

i=1 Z
2
i (t)/(pD1D2) is almost surely bounded as p → ∞. Similar

arguments show that
p

i=1 Zi(t)/(pD1D2) is almost surely bounded as p → ∞. Then, together with the facts that Ã1(t)
a.s.
→

µtµ−t and Z̄(t)
a.s.
→ µt as p → ∞, by Slutsky’s theorem, we have I

a.s.
→ 0 uniformly for α ∈ (0, 1/cµtµ−t ] with c > 1.

For II, noting that E{Hi(µt , α, µtµ−t)}
2 < ∞ for any nonzero |t| < ν/2 and α ∈ [0, 1/µtµ−t ], by Theorem 16 in [5], we

have II
a.s.
→ 0 uniformly for α ∈ (0, 1/cµtµ−t ] with c > 1.

For III, we have

III =

1p
p

i=1

EHi(µt , α, µtµ−t) −
1
p

p
i=1

EHi(Z̄(t), α, A1(t))


≤

1
p

p
i=1

E
Hi(µt , α, µtµ−t) − Hi(Z̄(t), α, A1(t))


≤

1
p

p
i=1

E
 {A1(t) − µtµ−t}Z2

i (t)
D2D3

+ 1
p

p
i=1

E
 {Z̄(t) − µt}Zi(t)

D2D3

 , (11)

where D2 is defined above and D3 = αZ̄(t) + {1− A1(t)α}Zi(t). Following a similar argument as above it can be shown that
for α ∈ (0, 1/cµtµ−t ] with c > 1,

1
p

p
i=1

E
 {A1(t) − µtµ−t}Z2

i (t)
D2D3

 ≤ C1

E{A1(t) − µtµ−t}

21/2 ,
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where C1 is a finite number independent of α. Now since E{A1(t)−µtµ−t}
2

→ 0 as p → ∞, the first term in (11) converges
to 0 uniformly for α ∈ [0, 1/cµtµ−t ] with c > 1. Similarly, it can be shown that the second term in (11) converges to 0
uniformly for α ∈ [0, 1/cµtµ−t ] with c > 1. Therefore, III

a.s.
→ 0 uniformly for α ∈ (0, 1/cµtµ−t ] with c > 1.

Now we show that α̃∗

T1
− α∗

T1
a.s.
→ 0 as p → ∞. For ease of notation, denote f1(α) = R̂′

T1
(α; σ2t) and f2(α) = R′

T1
(α; σ2t).

When p > N1 such that Ã1(t) < cµtµ−t , we have for any α ∈ (0, 1/cµtµ−t ] with c > 1,

f ′

1(α) =
1
p

p
i=1


Z̄(t) − Ã1(t)Zi(t)

αZ̄(t) + {1 − Ã1(t)α}Zi(t)

2

≥
1
p

p
i=1


Z̄(t) − Ã1(t)Zi(t)

Z̄(t)/cµtµ−t + Zi(t)

2

a.s.
→ (µtµ−t)

2E


Z1(t) − 1/µ−t

Z1(t) + 1/cµ−t

2

, as p → ∞. (12)

Now since Z1(t) is a non-trivial random variable, we have minα∈(0,1/cµtµ−t ] limp→∞ f ′

1(α) ≥ M > 0 where M is the limit in
(12). Thus, there exists an N2 > 0 such that for any p > N2, |f1(α∗

T1
) − f1(α̃∗

T1
)|/|α̃∗

T1
− α∗

T1
| ≥ M/2. Note that, by definition,

f1(α̃∗

T1
) = f2(α∗

T1
) = 0. This leads to |f1(α∗

T1
) − f2(α∗

T1
)| ≥ (M/2)|α̃∗

T1
− α∗

T1
| for any p > N2. Note that f1(α) − f2(α)

a.s.
→ 0

uniformly forα ∈ (0, 1/cµtµ−t ]with c > 1. By letting c → 1 such thatα∗

T1
∈ (0, 1/cµtµ−t ], we have f1(α∗

T1
)−f2(α∗

T1
) → 0

as p → ∞. Finally, asM > 0, we have α̃∗

T1
− α∗

T1
→ 0 as p → ∞.

The proof of (ii) is similar and thus is omitted.
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