
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2025, VOL. 00, NO. 0, 1–14
https://doi.org/10.1080/10618600.2025.2520577

When Tukey Meets Chauvenet: A New Boxplot Criterion for Outlier Detection

Hongmei Lina, Riquan Zhanga, and Tiejun Tongb

aSchool of Statistics and Data Science, Shanghai University of International Business and Economics, Shanghai, China; bDepartment of Mathematics,
Hong Kong Baptist University, Hong Kong, China

ABSTRACT
The box-and-whisker plot, introduced by Tukey, is one of the most popular graphical methods in descriptive
statistics. On the other hand, however, Tukey’s boxplot is free of sample size, yielding the so-called “one-size-
fits-all”fences for outlier detection. Although improvements on the sample size adjusted boxplots do exist in
the literature, most of them are either not easy to implement or lack justification. As another common rule for
outlier detection, Chauvenet’s criterion uses the sample mean and standard derivation to perform the test,
but it is often sensitive to the included outliers and hence is not robust. In this article, by combining Tukey’s
boxplot and Chauvenet’s criterion, we introduce a new boxplot, namely the Chauvenet-type boxplot, with
the fence coefficient determined by an exact control of the outside rate per observation. Our new outlier
criterion not only maintains the simplicity of the boxplot from a practical perspective, but also serves as a
robust Chauvenet’s criterion. Simulation study and a real data analysis on the civil service pay adjustment
in Hong Kong demonstrate that the Chauvenet-type boxplot performs extremely well regardless of the
sample size, and can therefore be highly recommended for practical use to replace both Tukey’s boxplot
and Chauvenet’s criterion. Lastly, to increase the visibility of the work, a user-friendly R package named
“ChauBoxplot” has also been officially released on CRAN.
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1. Introduction

The box-and-whisker plot, introduced by Tukey (1977), is also
known as Tukey’s boxplot or, simply, the boxplot. It is one of the
most popular graphical methods in descriptive statistics, which
provides a very efficient tool to visualize the distribution of the
sample data. The boxplot not only displays a box ranging from
the first quartile (Q1) to the third quartile (Q3) of the data,
but also provides two whiskers extending from the edge of the
box to the lower and upper fences for outlier detection. More
specifically, by letting IQR = Q3 − Q1 be the interquartile range
of the data, the lower and upper fences of the boxplot are given
as LF = Q1 − k × IQR and UF = Q3 + k × IQR, where k > 0 is
the fence coefficient. Tukey (1977) further referred to the fences
with k = 1.5 as the “inner fences”, and with k = 3 as the
“outer fences”. The two visualized whiskers are then drawn from
the smallest value within the inner fences to the first quartile,
and from the third quartile to the largest value within the inner
fences. Lastly, the outliers that differ from the majority of the
data will be plotted as individual points beyond the whiskers
on the boxplot. According to the degree of abnormality, Tukey
(1977) also declared the observations between the inner and
outer fences as the “outside” outliers, and those beyond the outer
fences as the “far out” or “extreme” outliers. For more details on
Tukey’s boxplot and its variants for univariate data, one may refer
to (Frigge, Hoaglin, and Iglewicz 1989; Schwertman, Owens,
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and Adnan 2004; Sim, Gan, and Chang 2005 Wickham and
Stryjewski 2011; Walker et al. 2018; Rodu and Kafadar 2022),
and the references therein.

Apart from the boxplot, the identification of outliers itself is
another important issue in robust statistics and related areas.
Statistically, an outlier may be defined as an abnormal obser-
vation or contaminated data that does not follow the same
distribution as the majority of the data. If the outliers are not
identified and further excluded from the data, they may have
an unexpected impact on the subsequent data analysis, yielding
a misleading or erroneous conclusion. Because of this, there is
a vast and growing literature on the identification and accom-
modation of suspected outliers since the 19th century. To name
a few, the first rigorous test was proposed by Peirce (1852),
which is also known as Peirce’s criterion. Due to its complicated
procedure, however, Peirce’s criterion was soon superseded by
an alternative called Chauvenet’s criterion. Given a sample of
data from a normal distribution with X̄ the sample mean and
S the sample standard deviation, Chauvenet (1863) declared an
observation as an outlier if its value is outside the interval [X̄ −
cnS, X̄ + cnS], where cn = �−1(1 − 0.25/n) is the upper 0.25/n
quantile of the standard normal distribution. Thanks to its sim-
plicity and effectiveness, Chauvenet’s criterion has been widely
used in different fields including, but not limited to, astronomy,
nuclear technology, geology, epidemiology, molecular biology,
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radiology, and physical science (Ross 2003; Maples et al. 2018;
Vermeesch 2018).

It is noteworthy that there exist many other outlier testing
procedures in the literature (Andrews 1974; Andrews and Preg-
ibon 1978; Beckman and Cook 1983; Rosner 1983; Davies and
Gather 1993; Fung 1993; Atkinson 1994; Carey et al. 1997; Bates
et al. 2023; Bhattacharya, Kamper, and Beirlant 2023), as well
as those being summarized in the monographs (Hawkins 1980;
Barnett and Lewis 1994; Atkinson and Riani 2000; Hawkins
2006). To the best of our knowledge, Tukey’s boxplot and Chau-
venet’s criterion are still among the most popular methods for
outlier detection, mainly thanks to their simplicity as well as
the reasonable accuracy (Brant 1990; Milton 1999). Despite
their popularity, each of these two methods has well-known
disadvantages. Specifically for Tukey’s boxplot, we note that
the fence coefficient k is free of sample size, yielding the so-
called “one-size-fits-all” fences to label the outliers (McGill,
Tukey, and Larsen 1978; Sim, Gan, and Chang 2005). Although
improvements on the sample size adjusted boxplots do exist in
the literature, most of them are either not easy to implement
(Sim, Gan, and Chang 2005; Banerjee and Iglewicz 2007) or lack
justification (Barbato et al. 2011). For more details, see Section 2.
On the other hand, Chauvenet’s criterion uses the sample mean
and standard derivation to perform the test, and consequently,
it is often very sensitive to the included outliers and, hence, may
not provide a robust method for outlier detection. For further
illustration, see the toy example in Section 3.1.

In this article, by combining Tukey’s boxplot and Chauvenet’s
criterion, we introduce a new boxplot, namely the Chauvenet-
type boxplot, with the fence coefficient determined by an exact
control of the outside rate per observation. Our new outlier
criterion not only maintains the simplicity of the boxplot from
a practical perspective, but also serves as a robust Chauvenet’s
criterion. Simulation study and a real data analysis on the civil
service pay adjustment in Hong Kong also demonstrate that the
Chauvenet-type boxplot performs extremely well regardless of
the sample size, and can therefore be highly recommended for
practical use to replace both Tukey’s boxplot and Chauvenet’s
criterion. The remainder of the article is organized as follows. In
Section 2, we review the existing boxplots for outlier detection
that incorporate the sample size into the construction of the
lower and upper fences. In Section 3, we first review Chauvenet’s
criterion and then propose our new boxplot that is a combina-
tion of Chauvenet’s criterion and the classic boxplot for detecting
outliers. In Section 4, we conduct simulation study and real data
analysis to compare the performance of the new and existing
boxplots as well as Chauvenet’s criterion. In Section 5, we further
extend the Chauvenet-type boxplot to handle nonnormal data
for outlier detection and demonstrate by simulations that our
new criterion performs also very well. Lastly, the article is con-
cluded in Section 6 with some discussion and future directions.

2. Existing Boxplots for Outlier Detection

As is known, Tukey’s box-and-whisker plot is very appealing
in descriptive statistics, mainly thanks to its simplicity and low
sensitivity to outlier distortion. On the other hand, however,
the whiskers in Tukey’s boxplot or some of its variants are free,

or nearly free, of the sample size of the data so that they yield
a one-size-fits-all rule for outlier detection. In this section, we
give a brief review of the major developments of boxplots that
aim to incorporate the sample size into the fences. For ease of
presentation, we will assume the data is normally distributed in
the next three sections, whereas the extensions to nonnormal or
skewed data will be presented in Section 5.

Let X1, . . . , Xn be a sample of size n from the normal distribu-
tion N(μ, σ 2), where μ is the mean and σ 2 > 0 is the variance.
Let also Q1 and Q3 be the first and third quartiles of the data,
respectively. To construct the boxplot, we define the lower and
upper fences as

LFn = Q1 − kn × IQR and UFn = Q3 + kn × IQR, (1)

where IQR = Q3 − Q1 is the interquartile range and kn is
the fence coefficient depending on the sample size. Hoaglin,
Iglewicz, and Tukey (1986) termed the some-outside rate per
sample, denoted by α, as the probability that one or more obser-
vations in the normal sample will be wrongly classified as out-
liers. To control the some-outside rate, the outlier region is then
set to satisfy

P (one or more of X1, . . . , Xn ∈ (−∞, LFn) ∪ (UFn, ∞)) = α.
(2)

In other words, if an observation X is either smaller than LFn
or larger than UFn, then it will be labeled as an α-outlier in the
boxplot. Hoaglin, Iglewicz, and Tukey (1986) further termed the
outlier labeling rule to formally describe Tukey’s outlier flagging
procedure.

Observing that the exact solution of kn satisfying (2) is rather
complicated, Hoaglin, Iglewicz, and Tukey (1986) proposed a
multistep approximation procedure to determine the choices
of kn in the boxplot for samples with normal data. One main
disadvantage of their approximation procedure is that the statis-
tical expertise and decision are needed in each step, which will
unavoidably result in the propagation of approximation errors.
In view of this, Hoaglin and Iglewicz (1987) further applied
the simulation to obtain the numerical values of kn for normal
samples. Specifically, by converting the boxplot outlier labeling
rule to a formal outlier identification testing procedure, they
found the value of kn to be close to 2.2 for α = 0.05 and n up to
300.

2.1. Boxplots with Exact Some-Outside Rate

For the boxplots with some-outside rate per sample, Sim, Gan,
and Chang (2005) made some extra efforts to derive the exact
solution of kn satisfying (2). Let X(1) = min{X1, . . . , Xn} and
X(n) = max{X1, . . . , Xn} be the minimum and maximum values
of the sample. Note that the event {one or more of X1, . . . , Xn ∈
(−∞, LFn) ∪ (UFn, ∞)} is the union of two disjoint compound
events A1 = {X(n) > UFn} and A2 = {X(1) < LFn, X(n) ≤
UFn}. Under the exact control of the some-outside rate, the
requirement on (2) implies that P(A1) + P(A2) = α. In addi-
tion, the standardization procedure to X1, . . . , Xn can be further
applied so that the sample is free of μ and σ . In this section,
for simplicity of notation, we directly regard X1, . . . , Xn to be
the standard normal data. Finally, by the property that the order
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statistics of the sample form a Markov chain David and Nagaraja
(2003), an exact expression for kn satisfying (2) can be derived
as ∫ ∞

−∞

∫ ∞

x1

{
1 − IGu(yu)(n − u, 1)

[
1 − IGl(yl)(1, l − 1)

]

× fQ1,Q3(x1, x3)
}

dx3dx1 = α,

where Gl(yl) = �(yl)/�(x1) with yl = x1 − kn(x3 − x1),
Gu(yu) = [�(yu)−�(x3)]/[1−�(x3)] with yu = x3 +kn(x3 −
x1), Ip(a, b) = ∫ p

0 ta−1(1 − t)b−1dt/B(a, b) is the incomplete
beta function, and fQ1,Q3(x1, x3) is the joint probability density
function of Q1 and Q3. For more details, see eqs. (7) and (8) in
Sim, Gan, and Chang (2005) together with the associated text.

Next, to solve kn from the above question, Sim, Gan, and
Chang (2005) further applied the multivariate quadrature rule to
numerically approximate the double integral, and then applied
a direct search or Monte Carlo integration algorithm to search
for the value of kn that yields an exact control of the some-
outside rate per sample. For practical use, they also provided
some numerical values of kn in their Table 1 together with
an approximation formula. Taken the normal distribution with
α = 0.05 and n = 4m + 1 with m ∈ {2, 3, . . . , 124} as an
example, the fence coefficient with exact some-outside rate (ER)
is approximated as

kER
n ≈ exp{4.01761 − 2.35363 ln(n) + 0.64618 ln2(n)

−0.07893 ln3(n) + 0.00368 ln4(n)}. (3)

For more numerical approximations with other values of α and
n, one may refer to Table A.1 from their Appendix, in which the
maximum absolute deviation δ between the true and approxi-
mated values of kER

n were also given.

2.2. Boxplots with Tolerance Limits

As an alternative, Sim, Gan, and Chang (2005) further applied
the tolerance interval, an important statistical tool in reliability
and quality control, to construct the fences of the boxplot. A
tolerance interval is an interval determined from a random
sample in such a way that one may have a specified 100γ %
level of confidence that the interval will cover at least a specified
β proportion of the sampled population. For more on toler-
ance intervals, one may refer to Guttman (1970), Patel (1986),
and Liao and Iyer (2004). For a certain distribution, let f (x)

be the probability density function and F(x) be the cumula-
tive distribution function. Let also L(X) = L(X1, . . . , Xn) and
U(X) = U(X1, . . . , Xn) be two statistics with L(X) < U(X).
Then with the probability coverage of the random interval W =∫ U(X)

L(X)
f (x)dx = F(U(X)) − F(L(X)), the interval [L(X), U(X)]

defines a two-sided (γ , β) tolerance interval if P(W ≥ β) = γ ,
where γ and β are two specified probability values.

As a good example, the tolerance interval with L(X) = X̄−kS
and U(X) = X̄ + kS has been widely used in quality control
Guenther (1977), where X̄ is the sample mean and S is the
sample standard deviation. Now with the boxplot, Sim, Gan, and
Chang (2005) constructed a (γ , β) tolerance interval with L(X)

and U(X) being the lower and upper fences in (1), respectively.
Observations that fall outside the tolerance limits are labeled as
outliers. Then by letting β = 1 − α, the value of kn is defined to

satisfy P(P(all of X1, . . . , Xn ∈ (LFn, UFn) ≥ 1 − α)) = γ , or
equivalently,

P
(∫ UFn

LFn
f (x)dx ≥ 1 − αn

)
= γ ,

where αn = 1 − (1 − α)1/n. Moreover, by the symmetry of the
normal distribution, the value of kn can be determined from the
equation P(P(X < LFn) ≤ αn/2) = γ . Finally, numerical
approximation using the quadrature rule needs to be imple-
mented for computing the integral, followed by a direct search
algorithm or Monte Carlo integration algorithm to search for
the value of kn. For practical use, the authors also provided the
numerical values of kn in their Table 2 for different combinations
of (α, γ , n), together with the approximation formulas in Table
A.2. Taken the normal distribution with α = 0.05, γ = 0.9 and
n = 4m + 1 with m ∈ {2, 3, . . . , 124} as an example, the fence
coefficient with tolerance limits (TL) is approximated as

kTL
n ≈ exp{4.45171 − 2.44501 ln(n) + 0.64990 ln2(n)

−0.07851 ln3(n) + 0.00365 ln4(n)}. (4)

2.3. Boxplots with Asymptotic Fences

In view of the complexity in deriving the exact expression of kn
satisfying (2), Iglewicz and Banerjee (2001) and Banerjee and
Iglewicz (2007) proposed an alternative solution based on the
asymptotics. Specifically, they first derived the limiting solution
of kn from (2) when n goes to infinity, and then regress the fitted
values back to smaller sample sizes. By the symmetry of the nor-
mal distribution and the fact that {one or more of X1, . . . , Xn ∈
(−∞, LFn) ∪ (UFn, ∞)} = {X(1) < LFn or X(n) > UFn},
Banerjee and Iglewicz (2007) thus, simplified the solution to (2),
approximately, as the solution to the equation of

P
(
X(n) ≤ Q3 + kn × IQR

) = 1 − α/2.

Finally, since P(X(n) ≤ x) = [P(X1 ≤ x)]n, it suffices to solve
P(X1 ≤ Q3 + kn × IQR) = (1 − α/2)1/n for the value of kn.

For normal data, as mentioned in Section 2.1, the solution
of kn to the above question does not depend on μ and σ . Thus
for simplicity, we assume that the data is sampled from N(0, 1)

with �(x) being the cumulative distribution function. When n
is sufficiently large, by replacing Q1 by �−1(0.25) and Q3 by
�−1(0.75), it leads to the limiting solution as kn = [�−1(1 −
α/2)1/n) − �−1(0.75)]/(�−1(0.75) − �−1(0.25)) = [�−1(1 −
α/2)1/n) − 0.6745]/1.349. Finally, on the basis of a simulation
study for smaller sample sizes, Banerjee and Iglewicz (2007)
recommended their fence coefficient with asymptotic fences
(AF) as

kAF
n ≈ an × �−1 (

(1 − α/2)1/n) − 0.6745
1.349

, (5)

where an is the smoothed adjustment value with an = 1 +
8.9764n−1 − 126.6262n−2 + 1531.7064n−3 − 10729.3439n−4

for n < 2000, and an = 1 for n ≥ 2000.
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2.4. Boxplots with Empirical Considerations

Recall that Tukey’s outlier flagging procedure takes a constant
k when constructing the lower and upper fences, yielding a
one-size-fits-all boxplot for labeling the potential outliers. To
take into account the sample size, unlike those complicated
procedures in the previous sections that control either the some-
outside rate or the tolerance limit, Barbato, Genta, and Levi
(2009) suggested a modified IQR method based on some empir-
ical considerations (EC). Specifically, by modifying IQR with
IQR[1 + 0.1 ln(n/10)], their fence coefficient associated with
k = 1.5 is given as

kEC
n = 1.5 × [1 + 0.1 ln(n/10)] . (6)

Note that kEC
n is monotonically increasing with n, and so is the

interval length consisting of the two fences, in such a way that the
dependence on the sample size is introduced into the boxplot. In
addition, as stated by Barbato et al. (2011), their boxplot outlier
labeling rule retains its primary advantages, including simplicity
and the lack of need for iteration, thanks to the robust estimate
of spread achieved by excluding both tails.

We are not aware of any newer developments for constructing
the sample size adjusted boxplots with univariate normal data,
expect for those with nonnormal or skewed data for which we
will discuss later in Section 6. It is also noteworthy that, during
the last decade, researchers have turned their main attention
to other types of boxplots including, for example, boxplots for
functional data (Hyndman and Shang 2010; Sun and Genton
2011; Dai and Genton 2018; Qu and Genton 2022), boxplots for
circular data (Abuzaid, Mohamed, and Hussin 2012; Buttarazzi,
Pandolfo, and Porzio 2018), boxplots for contours, curves
and paths (Whitaker, Mirzargar, and Kirby 2013; Mirzargar,
Whitaker, and Kirby 2014; Raj et al. 2017), and boxplots for
large data (Hofmann, Wickham, and Kafadar 2017).

3. Chauvenet-Type Boxplot

As reviewed in Section 2, the whiskers in Tukey’s boxplot are
free of the sample size of the data, yielding the so-called “one-
size-fits-all” criterion for outlier detection. Although improve-
ments on the sample size adjusted boxplots do exist in the
literature, most of them are either not easy to implement or
lack justification. As another example for illustration, on the
basis of Hoaglin, Iglewicz, and Tukey (1986) and Hoaglin and
Iglewicz’s (1987) boxplot outlier labeling rules, Frigge, Hoaglin,
and Iglewicz (1989) further conducted a survey on popular
software packages to standardize the fence coefficient selection
for boxplot construction. It is noted, however, that they finally
recommended to use Tukey’s (1977) fence constants of 1.5 or 3 as
the default value in the boxplot. This, from another perspective,
shows that the sample size adjusted whiskers in their boxplot
papers in 1986 and 1987 may not be very practical for outlier
detection.

3.1. Chauvenet’s Criterion

Apart from the boxplot that uses the lower and upper quartiles,
another common approach is to construct the outlier regions
based on the mean (X̄) and standard deviation (S) of the sample

data. Among this category, the 3-sigma limits are the best known
in the quality control chart (Pukelsheim 1994; Wheeler and
Chambers 2010), by which a data point will be labeled as a
suspected outlier if outside the interval [X̄ − 3S, X̄ + 3S]. As
can be seen, this method is relatively simple to implement, and
in addition, the constant 3 is not a must as the multiplier of the
standard deviation. For instance, [X̄−2S, X̄+2S], [X̄−2.5S, X̄+
2.5S] and [X̄ −4S, X̄ +4S] are also occasionally used, depending
on whether a more relaxed or strict control is desired. More
interestingly, with a constant time of sigma clipping, we note that
the 3-sigma limits work in a similar way as Tukey’s whiskers with
a constant time of IQR as the length. Taking the normal data
as an example, Tukey’s outlier labeling rule with kn = 1.5 or
kn = 1.72 is asymptotically equivalent to the 2.7-sigma or 3-
sigma clipping, respectively Morales, Giraldo, and Torres (2021).

To incorporate the sample size into the sigma clipping rules,
the first rigorous test using the probability theory was proposed
by Peirce in 1852, which is also known as Peirce’s criterion Peirce
(1852), Gould (1855), Peirce (1878). Peirce’s test is based on what
are now called the Z-scores, by which any observations with
|Z| > c will be rejected, where c depends on both the sample size
and the number of suspected outliers. Due to the complicated
form of c, however, Peirce’s test is not easy to implement which
greatly hinders its popularity for practical use. And in fact, it was
soon superseded by an alternative called Chauvenet’s criterion,
which identifies a data point as an outlier if the probability of
obtaining a value at least as extreme as the observed one is less
than 0.5/n, where n is the size of the sample. Statistically, by
letting X1, . . . , Xn be a random sample from N(μ, σ 2) with X̄
as the sample mean and S as the sample standard deviation,
Chauvenet (1863) first computed the deviation of each data
point from the mean as Di = |Xi − X̄|/S, where i = 1, . . . , n. He
then set cn = �−1(1 − 0.25/n) as the threshold, and declared
each data point with deviation Di greater than cn as a suspected
outlier. Or equivalently, if we present the criterion using the
sigma clipping, then a data point will be labeled as an outlier
if outside the interval

[X̄ − cnS, X̄ + cnS]. (7)

To summarize, Chauvenet’s criterion will reject, on average, half
an observation of genuine data from the normal distribution
regardless of the sample size.

As mentioned in Section 1, Chauvenet’s criterion has been
widely used in many different fields thanks to its simplicity
and effectiveness Ross (2003), as well as its usage spread across
government laboratories, industry, and universities. As a more
recent example, Chauvenet’s criterion and its modified version
have been adopted for outlier detection by the very popular
toolbox, IsoplotR, for geochronology Vermeesch (2018), which
has been cited more than 2500 citations in Google Scholar as of
December 2024. Despite its popularity, Chauvenet’s criterion has
drawbacks. An obvious limitation is that it can be very sensitive
to the included outliers and, hence, may not provide a robust
method for outlier detection.

To illustrate why Chauvenet’s criterion is lack of robustness,
we also consider a toy example with n = 9 observations, where
X1, . . . , X7 are a random sample of size 7 from the standard
normal distribution and X8 = X9 = 100 are two contaminated
data points. For ease of presentation, we further sort the
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observations in ascending order so that the whole data set is X =
{−1.938, −1.177, −0.854, −0.353, 0.890, 0.916, 1.741, 100, 100}.
Then with the sample mean X̄ = 22.136 and standard deviation
S = 44.160, the deviations of the data are given as

D = |X − X̄|
S

= {0.545, 0.528, 0.521, 0.509, 0.481, 0.481, 0.462, 1.763, 1.763}.
Finally, since the maximum deviation Dmax = 1.763 is less than
the threshold c9 = �−1(1 − 0.25/9) = 1.915, Chauvenet’s
criterion will hence declare no data point as suspected outliers,
although the last two are clearly contaminated.

3.2. A New Boxplot Criterion for Outlier Detection

As seen from the above toy example, Chauvenet’s criterion, and
more generally the sigma clipping rules, suffer from the included
outliers via the contaminated sample mean and standard devi-
ation. To improve the robustness, better estimates of the mean
and standard deviation ought to be considered, for example
using the quantile information as given in Tukey’s boxplot.
On the other hand, as reviewed in Section 2, Tukey’s outlier
labeling rule and its existing variants are themselves not perfect
in the way of incorporating the sample size. To further improve
boxplots for outlier detection, effective strategies involving the
sample size adjusted sigma clipping can be incorporated.

Inspired by this, we propose to take advantage of both Tukey’s
boxplot and Chauvenet’s criterion. More specifically, through
the fusion of these two classic technologies, we are able to
introduce a new boxplot criterion for more accurately and more
robustly labeling the outliers of the data. By formula (1), recall
that the lower and upper fences in Tukey’s boxplot are LFn =
Q1 − kn × IQR and UFn = Q3 + kn × IQR. Now to apply
Chauvenet’s criterion to determine the kn value, we first trans-
form the boxplot fences from the two quartiles, Q1 and Q3, back
to the sample mean and standard deviation. For normal data,
by Tukey (1977) we can apply the midhinge (Q1 + Q3)/2 to
estimate the sample mean, yielding Q1 + Q3 ≈ 2X̄; Further by
Higgins et al. (2019), we apply (Q3 − Q1)/1.35 to estimate the
sample standard deviation, yielding Q3 − Q1 ≈ 1.35S. Solving
the above two equations, we have Q1 ≈ X̄ − 0.675S and Q3 ≈
X̄ + 0.675S. Finally, by plugging them into (1), the new lower
and upper fences represented by the sample mean and standard
deviation can be expressed as LFn = X̄ − (1.35kn + 0.675)S and
UFn = X̄ + (1.35kn + 0.675)S.

Now to fuse Tukey’s boxplot with Chauvenet’s criterion, we
apply the upper 0.25/n quantile of the standard normal distri-
bution, that is cn = �−1(1 − 0.25/n), as the threshold for
labeling anomalous observations. This leads to 1.35kn +0.675 =
�−1(1−0.25/n), or equivalently, kn = �−1(1−0.25/n)/1.35−
0.5. Taken together, the lower and upper fences of our new
boxplot criterion for outlier detection are, respectively,

LFChau
n = Q1 − kChau

n × IQR and
UFChau

n = Q3 + kChau
n × IQR, (8)

where the fence coefficient associated with Chauvenet’s criterion
is

kChau
n = �−1(1 − 0.25/n)

1.35
− 0.5. (9)

We refer to the above boxplot with new whiskers as the
Chauvenet-type boxplot. With the new fence coefficient kChau

n
in (9), the Chauvenet-type boxplot not only provides an exact
control of the outside rate per observation, but also well
maintains the simplicity of the boxplot from the perspective
of practice.

Lastly, to demonstrate that our new boxplot criterion is more
robust for outlier detection than Chauvenet’s criterion, we revisit
the toy example in Section 3.1. We have Q1 = −0.854 and Q3 =
1.741, which are indeed the 3rd and 7th observations respec-
tively. Further by (8) and (9), we have kChau

n = 0.918, and conse-
quently, [LFChau

n , UFChau
n ] = [−3.237, 4.124]. Finally, observing

that the two contaminated data points with value 100 are far
beyond the upper fence at 4.124, our new boxplot criterion for
outlier detection will thus declare them as extreme outliers. On
the other hand, the lower and upper limits using Chauvenet’s
criterion are given as X̄ ± 1.915S = [−62.430, 106.702], provid-
ing a very wide interval that contains all nine observations, and
hence fail to declare any anomalous data points. To conclude, it
is evident that our new boxplot criterion has provided a robust
version of Chauvenet’s criterion, in such a way that the lower and
upper fences will no longer be sensitive to the extreme values
when they present.

3.3. Further Exploration

When the data is normal, the following theorem establishes an
asymptotic equivalence between our new boxplot criterion and
Chauvenet’s criterion for outlier detection, with the proof being
relegated to Section S1 of the online supplementary material.

Theorem 1. For normal data, the outlier region of the Chauvenet-
type boxplot is asymptotically equivalent to that of Chauvenet’s
criterion. More specifically by (7) and (8), we have

X̄ − cnS � Q1 − kChau
n × IQR, (10)

X̄ + cnS � Q3 + kChau
n × IQR, (11)

where � denotes the asymptotic equivalence such that if an �
bn, then an/bn → 1 as n → ∞.

By Theorem 1, the Chauvenet-type boxplot provides a com-
parable performance to Chauvenet’s criterion when the normal
data is not contaminated. But when the data contains outliers,
both X̄ and S may be dramatically affected so that the lower and
upper thresholds of Chauvenet’s criterion in (7) tends be wider,
or much wider, than is expected. In contrast, our new boxplot
criterion will be statistically resistant to the presence of outliers.
Specifically by the definition in Huber (2004), the breakdown
point of our new boxplot criterion will be as large as 25% of
the whole data. In other words, when the number of outliers
do not exceed 25%, the lower and upper fences in (8) for our
new boxplot criterion will remain unchanged. Taking the toy
example for illustration, with two contaminated data being 100,
the percentage of the outliers is 2/9 = 22.2% < 25% and so
they will not affect the outlier region. This explains why our new
boxplot criterion can successfully detect the two anomalous data
points, whereas Chauvenet’s criterion fails to do so due to the
very wide interval (7) caused by the contaminated sample mean
and standard deviation.
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Figure 1. The sample size adjusted fence coefficients for the new and existing boxplots, where n ranges from 8 to 2000. The dotted line represents the fence coefficient kER
n

in (3), the dashed line represents the fence coefficient kTL
n in (4), the dash-dotted line represents the fence coefficient kAF

n in (5), the long-dashed line represents the fence
coefficient kEC

n in (6), and the solid line represents our new fence coefficient kChau
n in (9). Lastly, the fence constant of k = 1.5 in Tukey’s boxplot is also given for reference.

Next, to explore the finite sample performance of the
Chauvenet-type boxplot, we further plot the values of kChau

n
in Figure 1 with the sample size ranging from 8 to 2000. And for
comparison, the existing fence coefficients reviewed in Section 2
are also ploted, including the fence coefficient kER

n in (3), the
fence coefficient kTL

n in (4), the fence coefficient kAF
n in (5), and

the fence coefficient kEC
n in (6). By Figure 1, it is evident that

the existing sample size adjusted methods all provide a longer
whisker, and hence a more stringent criterion, than our new
boxplot criterion for labeling the suspected outliers. We also
note that our new fence coefficient is much closer to Tukey’s
fence constant with k = 1.5, and in particular, the two fence
coefficients will be the same when n = 72. In other words, with
the sample size less than 72, we recommend a whisker even
shorter than that in Tukey’s boxplot for outlier detection, in a
way to more effectively increase the detection power for outliers.
In contrast, we observe that the two fence coefficients in Sim,
Gan, and Chang (2005), including kER

n in (3) and kTL
n in (4), both

display a decreasing pattern when n is small which may not be
reasonable. While for the fence coefficient kAF

n in (5), it has a
rapidly increasing trend when n is less than 20, thus, yielding a
less-smooth function of the sample size.

3.4. R package

To increase the visibility of the work, a user-friendly R pack-
age named “ChauBoxplot” has also been officially released on
CRAN. To install and load the package, one may enter the
following commands in the R console:

> install.packages("ChauBoxplot")
> library(ChauBoxplot)

The new package consists of two main functions, chau boxplot()
and geom chau boxplot(), for graphically drawing the Chauvenet-
type boxplot. For the first function, it can be operated the same
way as boxplot() in “base R” except that the new fence coefficient
kChau

n in (9) is now adopted rather than the default k = 1.5. For

the second function, it can also be operated the same way as
geom boxplot() in “ggplot2”. Lastly, for reference, the source files
and example codes are freely accessible on GitHub at https://
github.com/tiejuntong/ChauBoxplot.

4. Comparison of the boxplots

We compare the performance of the new and existing boxplots
for outlier detection using normal data in Section 4.1, nonnor-
mal data in Section 4.2, and real data in Section 4.3. Note that
the sample size adjusted whiskers, as reviewed in Section 2, are
seldom used in practice due to the difficulty to implement or
lack of justification. Thus to save space, we will only present
the comparison results for the Chauvenet-type boxplot with the
fence coefficient kChau

n in (9) and the classic Tukey’s boxplot with
the fence coefficient k = 1.5. We will demonstrate that our new
boxplot criterion associated with the Chauvenet-type boxplot is
not only simple and practical, but also more accurate and robust
in labeling outliers.

4.1. Normal Data

Given a total sample size of n, we generate the first n−2 observa-
tions as a random sample from the standard normal distribution,
and designate the last two observations as contaminated data
with Xn−1 = 5 and Xn = 6. Then with n = 50, 500, 5000, and
50,000, we plot the simulated data in Figure 2 using Tukey’s box-
plot (T.boxplot) and the Chauvenet-type boxplot (C.boxplot).
From the figure, we note that Tukey’s boxplot will label more
and more genuine data mistakenly as outliers when the sample
size becomes larger. As an example, with set.seed(1863) in R,
Tukey’s boxplot will label a total of 3, 48, and 357 suspected
outliers when n = 500, 5000, and 50,000, respectively. By
excluding the two contaminated data, the remaining 1, 46, and
355 outliers are indeed genuine data from the standard normal
distribution and so are wrongly labeled, which coincides with

https://github.com/tiejuntong/ChauBoxplot
https://github.com/tiejuntong/ChauBoxplot
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Figure 2. Outlier detection for normal data using Tukey’s boxplot (T.boxplot) and the Chauvenet-type boxplot (C.boxplot), where the data is generated from the standard
normal distribution with two contaminated data as 5 and 6. With set.seed(1863) in R, Tukey’s boxplot labels a total of 2, 3, 48, and 357 suspected outliers, and the Chauvenet-
type boxplot labels a total of 2, 2, 2, and 3 suspected outliers, for the simulated data with n = 50, 500, 5000 and 50,000, respectively. Lastly, the double glyph, consisting of
a cross and a dot, indicates that the observation is both contaminated data and labeled as an outlier.

the well-known statement that “if the data is sampled from the
normal distribution, then about 0.7% of them will lie outside
the two fences of the boxplot” (Hubert and Vandervieren 2008).
While for the Chauvenet-type boxplot, it labels a total of 2, 2,
2, and 3 suspected outliers for the simulated data with four
different sample sizes, respectively. If we further exclude the two
contaminated data, it then only labels 0, 0, 0, and 1 genuine
data as outliers by mistake for each boxplot. This coincides
with Chauvenet’s criterion that it will reject, on average, half
an observation of genuine data from the normal distribution,
regardless of how large the sample size is.

4.2. Nonnormal Data

For nonnormal data, we first consider two common distribu-
tions. One is the Chi-square distribution, which is right skewed,
and the other is Student’s t distribution, which is symmetric but
heavy tailed. We also consider 8 and 30 to represent the small
and large degrees of freedom associated with each distribution,
but to save space, we only present the simulation results for
8 degrees of freedom in the main text. Then with n = 50,
500, 5000, and 50,000, we generate sample data from the two
distributions and then plot them in Figures 3 and 4, respec-
tively, using Tukey’s boxplot (T.boxplot) and the Chauvenet-
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Figure 3. Outlier detection for skewed data using Tukey’s boxplot (T.boxplot) and the Chauvenet-type boxplot (C.boxplot), where the data is generated from the Chi-square
distribution with 8 degrees of freedom. With set.seed(1863) in R, Tukey’s boxplot labels a total of 0, 13, 102, and 1102 suspected outliers, and the Chauvenet-type boxplot
labels a total of 0, 4, 18 and 106 suspected outliers, for the simulated data with n = 50, 500, 5000 and 50,000, respectively.

type boxplot (C.boxplot). As is seen, there is no contaminated
data involved in this simulation; in other words, this study does
not suffer from any real outliers. Nevertheless, the two figures
show that both Tukey’s boxplot and the Chauvenet-type boxplot
have wrongly labeled many outliers, especially when the sample
size is large. Notably, a similar pattern has also been observed
from other skewed or heavy tailed distributions, including, but
not limited to, the beta, exponential, gamma, and log-normal
distributions. For more details, please refer to the boxplots in
the online supplementary material.

For a closer comparison, we note that the two boxplots per-
form similarly when n = 50, mainly because the fence coef-

ficient by Chauvenet’s criterion, kChau
50 = 1.41, is very close to

Tukey’s coefficient at k = 1.5. When the sample size becomes
larger, both of the boxplots will increasingly label more genuine
data as outliers, but our new boxplot criterion is relatively much
better. Taking set.seed(1863) again in R, for the χ2

8 distribution
with n = 500, 5000, and 50,000, respectively, Tukey’s boxplot
labels a total of 13, 102 and 1102 suspected outliers, whereas
our new boxplot only labels 4, 18, and 106 suspected outliers.
And for the t8 distribution with n = 500, 5000, and 50,000,
respectively, Tukey’s boxplot labels a total of 8, 117, and 1104
suspected outliers, whereas our new boxplot only labels 3, 18,
and 90 suspected outliers. To conclude, although not perfect,
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Figure 4. Outlier detection for heavy tailed data using Tukey’s boxplot (T.boxplot) and the Chauvenet-type boxplot (C.boxplot), where the data is generated from Student’s
t distribution with 8 degrees of freedom. With set.seed(1863) in R, Tukey’s boxplot labels a total of 1, 8, 117, and 1104 suspected outliers, and the Chauvenet-type boxplot
labels a total of 1, 3, 18, and 90 suspected outliers, for the simulated data with n = 50, 500, 5000 and 50,000, respectively.

our newly developed Chauvenet-type boxplot has the capacity
of labeling less “false positive” outliers thanks to the sample size
adjusted fences, especially for large sample sizes.

4.3. Real Data

For real data, we consider the civil service pay adjustment in
Hong Kong, where the data can be downloaded from https://
www.csb.gov.hk/english/admin/pay/55.html for the annual tax
year which runs from April 1 to March 31 of the following year.
In the 24 tax years since 2001, civil servants in Hong Kong had
their pay frozen or cut a total of eight times. In particular, as

a consequence of the SARS outbreak, they suffered from two
immediate pay cuts in 2003–2004 and 2004–2005, followed by
two pay freezes in 2005–2006 and 2006–2007. Since 2007, the
economic situation of Hong Kong has improved significantly,
but still encountered two adverse events thereafter. The first was
the global financial crisis between mid 2007 and early 2009,
which resulted in a pay cut of 5.38% for the upper-level staff
and a pay freeze for the lower and mid-level staff in the tax
year of 2009–2010. And the second was the economic turmoil
following the COVID-19 pandemic, which also prompted
a pay freeze for two consecutive years in 2020–2021 and
2021–2022.

https://www.csb.gov.hk/english/admin/pay/55.html
https://www.csb.gov.hk/english/admin/pay/55.html
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As can be seen, the annual rate of pay adjustment serves as an
important index for the economic development of Hong Kong.
In arriving at this pay adjustment rate, a thorough consideration
was often taken into account including six key factors under the
established annual civil service pay adjustment mechanism. In
this study, using the annual pay adjustment, we are interested
in examining whether the existing or new outlier criteria can
identify the pay freeze or pay cut, caused by the global financial
crisis or the COVID-19 pandemic, as contaminated data. Noting
that the pay adjustment for the lower and mid-level staff are
always the same, we thus combine these two bands and refer
to them as the “junior civil servants” for simplicity. While for
the staff in the upper band, we refer to them as the “senior civil
servants”. Lastly, for outlier detection using the three criteria, we
report the pay adjustment rates since 2007 in Table 1 for both the
junior and senior groups, each with n = 18 annual observations.

For junior civil servants, the rates of pay adjustment range
from 0% to 6.16%, together with Q1 = 2.61%, Q3 = 4.70%,
and n = 18. The lower and upper fences of Tukey’s boxplot with
k = 1.5 are LF = Q1 − k × IQR = −0.53% and UF = Q3 +
k × IQR = 7.84%. Since no rate is outside the interval [LF, UF],
Tukey’s boxplot fails to detect the 3 pay freezes with rate 0% as
contaminated data. Next, to apply the Chauvenet-type boxplot,
with kChau

n = �−1(1 − 0.25/n)/1.35 − 0.5 = 1.13, the lower
and upper fences are given as

LFChau
n = Q1 − kChau

n × IQR = 0.25%,

UFChau
n = Q3 + kChau

n × IQR = 7.07%.

Noting that the rate 0% is below the lower fence, we therefore
claim the 3 pay freezes in 2009–2010, 2020–2021, and 2021–
2022 as contaminated data, or suspected outliers, that were
caused by either the global financial crisis or the COVID-19
pandemic. One main reason for this success is that, due to the
small sample size of n = 18, we are able to apply a smaller
fence coefficient kChau

n = 1.13 to construct the outlier region.

Table 1. The annual rates of pay adjustment in Hong Kong for the lower and mid-
level staff (Junior civil servants) and the upper-level staff (Senior civil servants) since
2007.

Tax year Junior civil servants Senior civil servants

2024–2025 3.00% 3.00%
2023–2024 4.65% 2.87%
2022–2023 2.50% 2.50%
2021–2022 0.00% 0.00%
2020–2021 0.00% 0.00%
2019–2020 5.26% 4.75%
2018–2019 4.51% 4.06%
2017–2018 2.94% 1.88%
2016–2017 4.68% 4.19%
2015–2016 4.62% 3.96%
2014–2015 4.71% 5.96%
2013–2014 3.92% 2.55%
2012–2013 5.80% 5.26%
2011–2012 6.16% 7.24%
2010–2011 0.56% 1.60%
2009–2010 0.00% −5.38%
2008–2009 5.29% 6.30%
2007–2008 4.62% 4.96%

NOTE: Among the 18 tax years, junior civil servants had suffered a total of 3 pay
freezes in 2009–2010, 2020–2021, and 2021–2022. And senior civil servants had
suffered a pay cut of 5.38% in 2009–2010, followed by 2 pay freezes in 2020–2021
and 2021–2022.

Finally, it is also interesting to point out that, if Chauvenet’s
criterion is considered, then X̄ = 3.51%, S = 2.08%, and
cn = �−1(1−0.25/n) = 2.20. Further by (7), the sigma clipping
interval is given as [X̄−cnS, X̄+cnS] = [−1.07%, 8.09%], which
also fails to detect 0% as a suspected outlier due to its sensitivity
to the included outliers.

For senior civil servants, the rates of pay adjustment range
from −5.38% to 7.24%. In addition, we have Q1 = 2.04%,
Q3 = 4.91%, X̄ = 3.09%, S = 2.92%, and n = 18. For Tukey’s
boxplot, the lower and upper fences are LF = −2.27% and
UF = 9.22%. For the Chauvenet-type boxplot, the lower and
upper fences are LFChau

n = −1.20% and UFChau
n = 8.15%. And

for Chauvenet’s criterion, the sigma clipping interval is given
as [X̄ − cnS, X̄ + cnS] = [−3.33%, 9.52%]. It is evident that
all three criteria can detect the pay cut with rate −5.38% as an
outlier of the pay adjustment data, but none of them identifies
the 3 pay freezes as suspected outliers. To clarify, with the range
from −5.38% to 7.24%, a rate of 0% is indeed close to the mid-
range and hence does not look abnormal. In other words, as also
seen in Figure 5, the question of whether or not the rate 0% is
contaminated has largely been overshadowed by the abnormal
rate −5.38%. Lastly, it is worth pointing out that our lower fence
LFChau

n = −1.20% is much closer to 0% compared to the lower
fence LF = −2.27% and the lower limit X̄−cnS = −3.33%. This
shows that, among the three criteria, our new boxplot criterion
does have the greatest potential to label the pay freeze as unusual
pay adjustment for the civil servants in Hong Kong.

5. Chauvenet-Type Boxplot for Nonnormal Data

In this section, we extend the Chauvenet-type boxplot to han-
dle nonnormal data for outlier detection. We first show how
to construct the lower and upper fences of the boxplot using
the gamma distribution as an example, chosen to illustrate the
method on a two-parameter distribution. Let {X1, . . . , Xn} be
a random sample of size n from Gamma(α, β), where α is
the shape parameter and β is the scale parameter (Casella and
Berger 2002). This leads to the method of moments estimates of
the two parameters as

α̂ = nX̄2∑n
i=1(Xi − X̄)2 and β̂ =

∑n
i=1(Xi − X̄)2

nX̄
.

We then treat Gamma (α̂, β̂) as the distribution of the data, and
let F̂−1(·) represent its quantile function. Note that F̂−1(·) is
a generic notation that also applies to other nonnormal distri-
butions, as long as the distribution parameters can be properly
estimated from the data.

5.1. A New Boxplot Criterion for Nonnormal Data

Now to construct the new boxplot criterion for nonnormal data,
we let the lower and upper fences of the boxplot be LFn = Q1 −
k′

n × IQR and UFn = Q3 + k′′
n × IQR, where k′

n and k′′
n are

the fence coefficients. By the same spirit of Chauvenet’s criterion,
we further set F̂−1(0.25/n) and F̂−1(1 − 0.25/n) as the lower
and upper thresholds for outlier detection, respectively. In other
words, Chauvenet’s criterion suggests to set the lower fence as
LFn = F̂−1(0.25/n) and the upper fence as UFn = F̂−1(1 −
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Figure 5. Tukey’s boxplot and the Chauvenet-type boxplot of the civil service pay adjustment in Hong Kong since 2007. The left two panels are for junior civil servants,
where the three outliers with jitter in the second boxplot represent the 3 pay freezes in 2009–2010, 2020–2021 and 2021–2022. The right two panels are for senior civil
servants, with the outlier in both the boxplots represents the pay cut in 2009–2010.

0.25/n). By doing so, our new criterion will wrongly reject, on
average, a quarter observation from the upper tail and another
quarter observation from the lower tail. In addition, noting that
Q1 ≈ F̂−1(0.25) and Q3 ≈ F̂−1(0.75), we can derive that

k′
n ≈ F̂−1(0.25) − F̂−1(0.25/n)

F̂−1(0.75) − F̂−1(0.25)
and

k′′
n ≈ F̂−1(1 − 0.25/n) − F̂−1(0.75)

F̂−1(0.75) − F̂−1(0.25)
. (12)

In the special case when the data is normal, it is easy to verify
that k′

n = k′′
n = kChau

n = �−1(1 − 0.25/n)/1.35 − 0.5. Lastly,
with the fence coefficients in (12), the lower and upper fences of
our new boxplot criterion can be constructed as

LFChau
n = Q1 − F̂−1(0.25) − F̂−1(0.25/n)

F̂−1(0.75) − F̂−1(0.25)
× IQR, (13)

and

UFChau
n = Q3 + F̂−1(1 − 0.25/n) − F̂−1(0.75)

F̂−1(0.75) − F̂−1(0.25)
× IQR. (14)

Lastly, to distinguish it with the Chauvenet-type boxplot in
Section 3.2, we refer to the new boxplot with fences (13) and
(14) as the Chauvenet-type boxplot for nonnormal data.

5.2. Simulation Study

To evaluate the performance of the new boxplot for nonnormal
data, we revisit the two distributions in Section 4.2. We first
consider the Chi-square distribution with ν degrees of freedom.
Let {X1, . . . , Xn} be the sample data of size n, with X̄ being the
sample mean and Q1 and Q3 being the first and third quartiles.
Then by the method of moments, we have

ν̂ = X̄.

Letting also F̂−1(·) be the quantile function of the χ2
ν̂

distri-
bution, we can obtain the fence coefficients k′

n and k′′
n in (12),

yielding further the outlier region of the Chauvenet-type boxplot
as

(−∞, Q1 − k′
n × IQR

) ∪ (
Q3 + k′′

n × IQR, ∞)
. Finally, with

ν = 8 and n = 50,000, we generate the sample data from the χ2
8

distribution without contaminated data, and then plot the data
in Figure 6 using Tukey’s boxplot (T.boxplot), the Chauvenet-
type boxplot (C.boxplot), Tukey’s boxplot for nonnormal data
(T.boxplot.NN), and the Chauvenet-type boxplot for nonnormal
data (C.boxplot.NN). More specifically for T.boxplot.NN, it is
implemented using the “litteR” package in CRAN as the adjusted
boxplot for skewed distributions by Hubert and Vandervieren
(2008). Now if we take set.seed(1863) in R, the simulated data
will range from 0.22 to 43.09, with Q1 = 5.08, Q3 = 10.24
and ν̂ = X̄ = 8.02. Further by (12)–(14), it leads to k′

n =
0.94, k′′

n = 5.58, and [LFChau
n , UFChau

n ] = [0.20, 39.02]. Lastly,
observing that there are only two observations (39.66 and 43.09)
above the upper fence and no observation below the lower fence,
C.boxplot.NN thus only labels two suspected outliers among a
total of 50,000 observations. Among the other three boxplots,
however, the Chauvenet-type boxplot performs the best since it
only labels 106 suspected outliers as already seen in Section 4.2.

For the second simulation, we consider Student’s t distribu-
tion with ν degrees of freedom. Let {X1, . . . , Xn} be the sample
data with S2 being the sample variance and Q1 and Q3 being
the first and third quartiles. By equating the sample variance to
the population variance, that is ν/(ν − 2) = S2, we have the
estimated degrees of freedom as

ν̂ = 2S2/(S2 − 1).

Letting also F̂−1(·) be the quantile function of the tν̂ distribution,
we can thus have the outlier region of the Chauvenet-type box-
plot as

(−∞, Q1 − k′
n × IQR

) ∪ (
Q3 + k′′

n × IQR, ∞)
. Finally,

with ν = 8 and n = 50,000, we generate data from the t8
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Figure 6. Outlier detection for nonnormal data using Tukey’s boxplot (T.boxplot), the Chauvenet-type boxplot (C.boxplot), Tukey’s boxplot for nonnormal data
(T.boxplot.NN), and the Chauvenet-type boxplot for nonnormal data (C.boxplot.NN), where the data is generated from the χ2

8 and t8 distributions, respectively. With
n = 50,000 and set.seed(1863) in R, the Chauvenet-type boxplot for nonnormal data labels only 2 and 0 suspected outliers for each distribution. Among the other three
boxplots, the Chauvenet-type boxplot labels the least number of observations as outliers.

distribution and also plot the four boxplots in Figure 6 as in
the previous simulation. Taking set.seed(1863) in R again, the
simulated data ranges from −8.13 to 7.34, with Q1 = −0.70,
Q3 = 0.71, ν̂ = 2S2/(S2 − 1) = 8.02 and k′

n = k′′
n = 6.41.

This leads to [LFChau
n , UFChau

n ] = [−9.77, 9.78], thus, explaining
why C.boxplot.NN labels no outlier. Lastly, we note that the
comparison results among the other three boxplots remain the
same. For additional results on the boxplots with n = 50, 500
and 5000 from the χ2

8 and t8 distributions, please refer to the
online supplementary material.

6. Conclusion

Tukey’s box-and-whisker plot is one of the most popular meth-
ods used for descriptive statistics, but it is also known to be free
of sample size, yielding the so-called “one-size-fits-all” fences
for outlier detection. The main purpose of this article was to
introduce a new boxplot criterion that can more accurately, or
more robustly, label the suspected outliers or contaminated data.
In contrast to Tukey’s boxplot with the whiskers being 1.5 or 3
times of the interquartile range (IQR), our new boxplot tailored
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the whiskers’ length as kChau
n × IQR, where

kChau
n = �−1(1 − 0.25/n)

1.35
− 0.5

is the sample size adjusted fence coefficient determined by Chau-
venet’s criterion, with n being the sample size and �−1 being the
quantile function of the standard normal distribution. Observ-
ing that our new boxplot takes advantage of both Tukey’s boxplot
and Chauvenet’s criterion, we referred to it as the Chauvenet-
type boxplot, with the lower and upper fences being specified as
LFChau

n = Q1 − kChau
n × IQR and UFChau

n = Q3 + kChau
n ×

IQR as in (8). In addition, we noted that kChau
n is an increasing

function of n, with kChau
n = 1.5 when n = 72, and kChau

n = 3
when n = 217,282. And in particular, when the sample size
is less than 72, we even recommended a whisker shorter than
1.5 × IQR for outlier detection, in a way to more effectively
increase the detection power of outliers. With the fence coef-
ficient kChau

n , the Chauvenet-type boxplot not only provides an
exact control of the outside rate per observation, but also main-
tains the simplicity of the boxplot from a practical perspective.
Moreover, from the perspective of Chauvenet’s criterion, our
new boxplot criterion can also serve as a robust Chauvenet’s
criterion. Simulation study and a real data analysis on the civil
service pay adjustment in Hong Kong also demonstrated that
the Chauvenet-type boxplot performs extremely well regardless
of the sample size, and can therefore be highly recommended
for practical use to replace both Tukey’s boxplot and Chauvenet’s
criterion.

Lastly, we also presented in Section 5 that the Chauvenet-type
boxplot can be further extended to handle nonnormal data for
outlier detection. By numerical studies with the data generated
from the Chi-square and t distributions, the Chauvenet-type
boxplot for nonnormal data can perfectly do its job, and in
particular by providing two different whiskers, our new criterion
also effectively prevents to label too many outliers from one
side of the skewed data. On the other hand, we noted that
the fence coefficients k′

n and k′′
n derived in (12) require the

nonnormal distribution to be known, which however may not
be realistic in practice. If the underlying distribution of the
sample data is unknown, one may need to apply other statis-
tical techniques, for example the nonparametric methods, to
estimate the distribution function. As another alternative, one
may also apply some existing techniques in the literature to
label outliers for nonnormal and in particular for skewed data
(Schwertman, Owens, and Adnan 2004; Dümbgen and Riedwyl
2007; Schwertman and de Silva 2007; Hubert and Vandervieren
2008; Bruffaerts, Verardi, and Vermandele 2014; Dovoedo and
Chakrabort 2015; Shein and Fitrianto 2017; Walker et al. 2018;
Zhao and Yang 2019; Rodu and Kafadar 2022). In particular, we
noted that Kimber (1990) applied the semi-interquartile ranges
to construct the lower and upper fences, yielding LF = Q1 −
k(M − Q1) and UF = Q3 + k(Q3 − M), and Carling (2000)
further constructed the lower and upper fences as a form of
LF = M − k × IQR and UF = M + k × IQR, where M is the
sample median and k is the fence coefficient. Further research is
warranted in this direction to build more robust Chauvenet-type
boxplots.

Supplementary Materials

The online supplementary material gives the proof of Theorem 1 together
with a supporting lemma from the literature. It also provides a total of nine
additional figures for nonnormal boxplots with other skewed or heavy tailed
distributions to supplement the simulation studies in the main text.
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