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• Transforming nonparametric fixed effects panel data model into partially linear model.
• Based on the profile least-squares method, the fixed effects are removed.
• The asymptotic distributions are used to construct SCB of the nonparametric function.
• The bootstrap procedure is proposed to construct SCB of the nonparametric function.
• The proposed methods can be extended to various semiparametric panel data models.
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a b s t r a c t

This paper constructs the simultaneous confidence band for the nonparametric function in nonparametric
fixed effects panel datamodels.We first transform the nonparametric fixed effects panel datamodels into
the partially linear models. We then obtain the estimator of the nonparametric function and remove the
fixed effects using the profile least-squares method. Finally we apply the established asymptotic results
to construct the simultaneous confidence band for the nonparametric function.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Apanel data set is one that follows a given sample of individuals
over time, and thus provides multiple observations on each
individual in the sample. Panel data involve two dimensions: a
cross-sectional dimension and a time-series dimension. Such two-
dimensional data enable researchers to analyze complex models
and extract information and inferences which may not be possible
using pure time-series data or cross-sectional data. With the
increased availability, the panel data analysis is becoming more
popular in recent years. Arellano (2003), Hsiao (2003), and Baltagi
(2005) provided some excellent overviews on parametric panel
datamodel analysis. To relax the strong assumptions in parametric
panel data models, the econometricians and statisticians have also
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worked on nonparametric and semiparametric panel data models
recently. For instance, Henderson et al. (2008), Su andUllah (2011),
andWei andWu (2009) considered the fixed effects nonparametric
panel data models. Henderson and Ullah (2005), and Su and Ullah
(2007) considered the random effects nonparametric panel data
models. Baltagi and Li (2002), Li and Stengos (1996), Su and Ullah
(2006), and Zhang et al. (2011) considered the partially linear panel
data models with fixed effects, among others.

Consider the following nonparametric fixed effects panel data
model,

yit = µi + g(xit) + vit , i = 1, . . . , n, t = 1, . . . , T , (1.1)

where {yit} are response variables, {µi} are unobserved individual
effects, g(·) is an unknown smooth function, {xit} are explanatory
variables in [0, 1], and {vit} are random errors with zero mean. In
addition, T is the time series length, n is the cross section size, and
we assume that {µi} are independent and identically distributed
(i.i.d.) randomvariableswith zeromean and finite varianceσ 2

u > 0.

http://dx.doi.org/10.1016/j.econlet.2013.02.037
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Weallow for that the individual effects {µi} are correlatedwith the
explanatory variables {xit} in an unknown correlation structure.
This leads tomodel (1.1) as a fixed effectsmodel. For the purpose of
identification, we assume that

n
i=1 µi = 0 throughout this paper.

Alternatively, we say model (1.1) is a random effects model when
{µi} are uncorrelated with {xit}.

One important problem in nonparametric and semiparametric
regression is to construct the simultaneous confidence band
(SCB) for the nonparametric function g . Despite an increasing
body of literature in this area, little attention has been paid to
constructing SCB for model (1.1). This is certainly not due to a
lack of interesting applications, but mainly due to the considerable
difficulties in formulating SCB for panel data models and in
establishing their theoretical properties. Inspired by this, we
propose to establish the asymptotic distributions of the normalized
maximum deviation of the estimated nonparametric function
from the true nonparametric function. The proposed results will
then be applied to construct SCB for the nonparametric function
and to make inference for the constructed SCB. The remainder
of the paper is organized as follows. In Section 2, we present
the main results. Specifically, we will propose the estimation
procedure, establish the asymptotic properties, construct SCB for
thenonparametric function, andpropose a cross validationmethod
for the optimal bandwidth selection. We then conclude the paper
in Section 3 and present the simulation study and the technical
proofs in the supplementary materials (Appendix).

2. Main results

2.1. Estimation procedure

For ease of notation, let Y = (y11, . . . , y1T , . . . , yn1, . . . ,
ynT )T, g = (g(x11), . . . , g(x1T ), . . . , g(xn1), . . . , g(xnT ))T, v =

(v11, . . . , v1T , . . . , vn1, . . . , vnT )
T and µ0 = (µ1, . . . , µn)

T. Then
model (1.1) has the following matrix form,

Y = (In ⊗ eT )µ0 + g + v, (2.1)

where In is an n × n identity matrix, eT is a T -dimensional column
vector with all elements being 1, and ⊗ denotes the Kronecker
product. Furthermore, by the identification assumption

n
i=1 µi =

0, we have µ1 = −
n

i=2 µi. Define the (nT ) × (n − 1) matrix
Z = (z11, . . . , z1T , . . . , zn1, . . . , znT )T = [−en−1, In−1]

T
⊗ eT and

µ = (µ2, . . . , µn)
T, where {zit} are column vectors of size n − 1.

We rewrite (2.1) as

Y = Zµ + g + v. (2.2)

Note that model (2.2) is a partially linear model with the unknown
parameter vectorµ and the nonparametric function g(·). Thus, the
profile least-squares method can be used to estimate µ and g(·).
By assuming µ is known, model (2.2) reduces to a nonparametric
regression model

yit − zTitµ = g(xit) + vit , i = 1, . . . , n, t = 1, . . . , T . (2.3)

There are different methods available for estimating the nonpara-
metric function g . For simplicity, we apply the local polynomial
method to estimate it in what follows. Specifically, for xit close to
x ∈ [0, 1], we take the following local linear approximation,

g(xit) ≈ g(x) + g ′(x)(xit − x).
Given the µ value, θ(x) = (g(x), g ′(x))T is then estimated by
minimizing

n
i=1

T
t=1


yit − zTitµ − g(x) − g ′(x)(xit − x)

2
Kh(xit − x), (2.4)

where Kh(·) = K(·/h)/h with K(·) being a kernel function and
h = h(n) being the bandwidth. Let

Dx =


1 · · · 1 · · · 1 · · · 1

x11 − x · · · x1T − x · · · xn1 − x · · · xnT − x

T

and Wx = diag

Kh(x11 − x), . . . , Kh(x1T − x), . . . , Kh(xn1 − x),

. . . , Kh(xnT − x)


be an (nT ) × (nT ) diagonal matrix. Then the
objective function (2.4) becomes
Y − Dxθ(x) − Zµ

T
Wx


Y − Dxθ(x) − Zµ


. (2.5)

By minimizing (2.5), we have the solution of θ(x) asθ(x, µ) = (DT
xWxDx)

−1DT
xWx(Y − Zµ). (2.6)

In particular, the estimator of g(x) is given as

g(x, µ) = (1, 0)(DT
xWxDx)

−1DT
xWx(Y − Zµ), (2.7)

where (1, 0) is a row vector of size 2. Note thatg(x, µ) depends on
the unknown fixed effects µ. We consider removing µ by a least-
squares dummy variable model as in parametric panel data model
analysis. Specifically, we solve the following optimization problem
to estimate µ,

min
µ


Y −gµ − Zµ

T
Y −gµ − Zµ


= min

µ


Y ∗

− Z∗µ
T

Y ∗
− Z∗µ


, (2.8)

wheregµ = (g(x11, µ), . . . ,g(x1T , µ), . . . ,g(xn1, µ), . . . ,g(xnT ,
µ))T = S(Y − Zµ), Y ∗

= (InT − S)Y , Z∗
= (InT − S)Z , and S is an

(nT ) × (nT ) matrix of form

S =


(1, 0)(DT

x11Wx11Dx11)
−1DT

x11Wx11
(1, 0)(DT

x12Wx12Dx12)
−1DT

x12Wx12
· · ·

(1, 0)(DT
xnTWxnTDxnT )

−1DT
xnTWxnT

 .

The resulting profile least-squares estimator of µ is

µ̂ = [(Z∗)TZ∗
]
−1(Z∗)TY ∗

= (ZTQZ)−1ZTQY , (2.9)

where Q = (InT − S)T(InT − S). Given µ̂, the estimator of µ1 is
µ̂1 = −

n
i=2 µ̂i. Finally, by (2.7) and (2.9) we have the following

estimator of g(·),

ĝ(x) = (1, 0)(DT
xWxDx)

−1DT
xWx(Y − Zµ̂)

= (1, 0)(DT
xWxDx)

−1DT
xWxMY , (2.10)

where M = InT − Z(ZTQZ)−1ZTQ is an (nT ) × (nT ) matrix such
that MZ = 0.

2.2. Asymptotic properties

Here and in the sequel, define κj =

ujK(u)du and νj =


ujK 2(u)du for j = 0, 1, 2. We also denote by X = {xit , 1 ≤ i ≤

n, 1 ≤ t ≤ T } the observed covariates. To establish the asymptotic
results, we need the following conditions.
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C1 Assume that (µi, xi, vi), i = 1, . . . , n, are i.i.d., where vi =

(vi1, . . . , viT )
T and xi = (xi1, . . . , xiT )T. Furthermore, E(|vit |

2+δ)
< ∞ for some δ > 0, and let σ 2(x) = Var(v2

it |xit = x) where
σ 2(x) is uniformly bounded, and 0 < c1 ≤ σ 2(x) ≤ c2 < ∞.

C2 The function g(·) has continuous derivatives on [0, 1] up to the
second order.

C3 Let f (x) =
T

t=1 ft(x), where ft(·) denote the density function
of xit , and assume that ft(·) is continuous and positive on
the interval [0, 1] for each t = 1, . . . , T . Furthermore, letvit = vit −

1
T

T
s=1 vis, σ

2
t (x) = E[v2

it |xit = x], and σ 2(x) =T
t=1 σ 2

t (x)ft(x).
C4 The kernel function K(·) is a symmetric density function, and is

absolutely continuous on its support set [−A, A]. Furthermore,
K(A) = 0, K(u) is absolutely continuous and K 2(u), (K ′(u))2
are integrable on the (−∞, ∞).

C5 The bandwidth h satisfies that nh3/ log n → ∞ and nh5 log
n → 0 as n → ∞.

Theorem 1. Assume that conditions (C1)–(C5) hold. Let b(x) =

h2κ2g ′′(x)/2 and Σg(x) = ν0σ
2(x)f −2(x). Then uniformly for x ∈

[0, 1], we have

√
nh

ĝ(x) − g(x) − b(x)


L

−→ N

0, Σg(x)


, (2.11)

where ‘‘
L

−→’’ denotes convergence in distribution.

Theorem 2. Assume that conditions (C1)–(C5)hold andh = O(n−ρ)
for 1/5 ≤ ρ < 1/3. Then for all x ∈ [0, 1], we have

P


(−2 log h)1/2


sup

x∈[0,1]

nhΣ−1
g(x)

1/2
ĝ(x) − g(x)

− b(x)
− dn


< z


−→ exp


−2 exp(−z)


,

where dn = (−2 log h)1/2 +
1

(−2 log h)1/2
log


1

4ν0π


(K ′(t))2dt


.

The asymptotic normality of ĝ(x) in Theorem 1 is similar to the
result in Su and Ullah (2006) in the framework of partially linear
panel data models. Theorem 2 gives the asymptotic distribution
of the maximum absolute deviation between the estimated ĝ(·)
and the true g(·). It is worth mentioning that if the supremum
in Theorem 2 is taken on an interval [c1, c2] instead of [0, 1],
Theorem 2 still holds under certain conditions by transformation.
The resulting asymptotic distribution is

P


(−2 log{h/(c2 − c1)})1/2


sup

x∈[c1,c2]

nhΣ−1
g(x)

1/2
×


ĝ(x) − g(x) − b(x)

−dn


< z


−→ exp


−2 exp(−z)


,

wheredn is the dn in Theorem2withhbeing replacedbyh/(c2−c1).

2.3. SCB for the nonparametric function

Noting that the bias and variance of ĝ(·) involve the unknown
quantities,we cannot apply Theorem2directly to construct SCB for
g(·). By Theorem1, the asymptotic bias of ĝ(x) is (h2κ2/2)g ′′(x)(1+
oP(1)). We thus estimate the bias by bias(ĝ(x)) = h2κ2ĝ ′′(x)/2.
The estimator ĝ ′′(x) of g ′′(x) is obtained by using local cubic fitwith
an appropriate pilot bandwidth h∗ = O(n−1/7), which is optimal
for estimating g ′′(x) and can be chosen by the residual squares
criterion proposed in Fan and Gijbels (1996).

Now we estimate the asymptotic variance of ĝ(x). For simplic-
ity, suppose that vit are i.i.d. for all i and t . Then by the proof of
Theorem 1, we have

Var{ĝ(x)|X} = (1, 0)(DT
xWxDx)

−1(DT
xWxMΦMWxDx)

× (DT
xWxDx)

−1(1, 0)T,

whereΦ = diag(σ 2(x11), . . . , σ 2(x1T ), . . . , σ 2(xn1), . . . , σ 2(xnT )).
By the approximate local homoscedasticity, we can estimate the
asymptotic variance of ĝ(x) byVar{ĝ(x)|X} = (1, 0)(DT

xWxDx)
−1(DT

xWxMWxDx)

× (DT
xWxDx)

−1(1, 0)Tσ 2(x).

Let v̂ = Y − ĝ − Zµ̂ = (v̂11, . . . , v̂1T , . . . , v̂n1, . . . , v̂nT )
T be the

residuals vector. By (2.9) and (2.10), we have

Y = ĝ + Zµ̂ + v̂ = SMY + Z(ZTQZ)−1ZTQY + v̂

= SMY + (InT − M)Y + v̂ = Ŷ + v̂, (2.12)

where Ŷ = [InT + (S − InT )M]Y are the fitted values and v̂ =

(InT − S)MY . Finally, by the normalized weighted residual sum of
squares, we estimate σ 2(x) by

σ̂ 2(x) =
v̂Tv̂

tr(MTQM)
=

Y T(MTQM)Y
tr(MTQM)

.

Theorem 3. Assume that g(3)(·) is continuous on [0, 1] and the
pilot bandwidth h∗ is of order n−1/7. Then under the conditions
in Theorem 2, for all x ∈ [0, 1] we have

P


(−2 log h)1/2


sup

x∈[0,1]

 ĝ(x) − g(x) − bias(ĝ(x))
[Var{ĝ(x)|X}]1/2

− dn


< z


→ exp


−2 exp(−z)


,

where dn is defined in Theorem 2.

By Theorem 3, we can construct the (1 − α) × 100% SCB of the
nonparametric function as
ĝ(x) − bias(ĝ(x)) ± ∆1,α(x)


,

where∆1,α(x) =


dn +[log 2− log{− log(1−α)}](−2 log h)−1/2


[Var{ĝ(x)|X}]

1/2.

2.4. Bootstrap procedure

This subsection introduces a bootstrap procedure to construct
SCB for g(·). Let

T = sup
x∈[0,1]

|ĝ(x) − g(x)|
{Var(ĝ(x)|X)}1/2

.

Suppose that the upper α quantile of T is cα . If both cα and
Var(ĝ(x)|X) are known, the confidence band of g(·) on the interval
[0,1] would be

ĝ(x) ± {Var(ĝ(x)|X)}1/2cα.

However, cα and Var(ĝ(x)|X) are usually unknown in practice.
Suppose thatwe have the estimators ĉα and Var∗(ĝ(x)|X) of cα and
Var(ĝ(x)|X), respectively. Then we can obtain the (1− α) × 100%
confidence band of g(·) as follows

ĝ(x) ± {Var∗(ĝ(x)|X)}1/2ĉα.
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In what follows, we apply the bootstrap methods in Goncalves
and Kilian (2004) and Su and Chen (forthcoming) to estimate cα
and Var(ĝ(x)|X). The proposed algorithm is as follows:

(1) By (2.12), obtain the residuals vector v̂ = (InT − S)MY , where
v̂ = (v̂11, . . . , v̂1T , . . . , v̂n1, . . . , v̂nT )

T.
(2) For each i = 1, . . . , n and t = 1, . . . , T , obtain the bootstrap

error v∗

it = v̂itεit , where εit are i.i.d. N(0, 1) across i and t .
Generate the bootstrap sample member y∗

it by y∗

it = ŷit + v∗

it
for i = 1, . . . , n and t = 1, . . . , T , where ŷit is fitted values of
yit defined in (2.12).

(3) Given the bootstrap resample {(y∗

it , xit), i = 1, . . . , n, t =

1, . . . , T }, obtain the estimator of g(·), and denote the resulting
estimate by ĝ∗(·).

(4) Repeat (2)–(3)m times to get a sizembootstrap sample of ĝ(·) :

ĝ∗

k (·), k = 1, . . . ,m. The estimator Var∗(ĝ(·)) of Var(ĝ(·)) is
taken as the sample variance of ĝ∗

k (·), k = 1, . . . ,m.
(5) Repeat (2)–(3)M times to get a bootstrap sample of sizeM for

ĝ(·) : ĝ∗

k (·), k = 1, . . . ,M . Compute

T ∗

k = sup
x∈[0,1]

|ĝ∗

k (x) − ĝ(x)|
{Var∗(ĝ(x)|X)}1/2

, k = 1, . . . ,M.

(6) Use the upper α percentile of T ∗

k , k = 1, . . . ,M , to estimate
the upper α quantile cα of T .

3. Conclusion

This paper considers the nonparametric fixed effects panel data
models. We first transform the nonparametric fixed effects panel
data models into the partially linear models. We then obtain the
estimator of the nonparametric function and remove the fixed
effects using the profile least-squares method. The asymptotic
distributions of the normalized maximum deviation of the
estimated nonparametric function from the true nonparametric
function are also derived. The proposed results can be used to
construct SCB for the nonparametric function, and to construct
the test statistics for addressing graphical questions related to the
nonparametric function. For instance, if the constructed (1− α) ×

100% SCB for the nonparametric function over the set [0, 1] does
not contain any linear function, then it will be evident that the
link function g(·) is nonlinear. That is, a graphical representation
of the constructed SCB will suggest when to reject the null
hypothesis that g(·) is a linear function. Finally, we note that the
methods proposed in this paper can be readily extended to various
semiparametric panel data models with fixed effects.
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Appendix. Supplementary data

Supplementary material related to this article can be found
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