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Abstract
The paper proposes a novel difference-based method for testing the hypothesis of 
no relationship between the dependent and independent variables. We construct 
three test statistics for nonparametric regression with Gaussian and non-Gaussian 
random errors. These test statistics have the standard normal as the asymptotic null 
distribution. Furthermore, we show that these tests can detect local alternatives that 
converge to the null hypothesis at a rate close to n−1∕2 previously achieved only by 
the residual-based tests. We also propose a permutation test as a flexible alternative. 
Our difference-based method does not require estimating the mean function or 
its first derivative, making it easy to implement and computationally efficient. 
Simulation results demonstrate that our new tests are more powerful than existing 
methods, especially when the sample size is small. The usefulness of the proposed 
tests is also illustrated using two real data examples.
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1 Introduction

Consider a regression model of the form

where yi and xi are the ith observations of the scalar dependent and independent 
variables, g is a mean function, and �i are independent and identically distributed 
(i.i.d.) random errors with mean zero and variance 𝜎2 > 0 . In regression analysis, 
we are often interested in testing the null hypothesis of no relationship between the 
dependent and independent variables:

For example, it is of interest to investigate whether the COVID-19 incubation period 
depends on age (Tan et al 2020), whether the adult human gut microbial depends 
on age (Zhang et al 2021), and to identify genes that show statistically significant 
changes in expression over time (Storey et al 2005).

When the function g is modeled parametrically by a linear model, the F test is 
the standard approach for testing no effect as in (2). However, a parametric model 
for g is often difficult to specify or can be too restrictive in many applications. 
Nonparametric regression approaches for testing no effect have been considered 
by many authors (Barry and Hartigan 1990; Raz 1990; Chen 1994; Eubank 2000; 
Yatchew 2003; Li 2012; Van Keilegom et al 2008; González-Manteiga and Crujeiras 
2013). Most of the existing tests are based on a nonparametric fit to the mean 
function g, or its first derivative g′ , using nonparametric smoothing techniques. In 
this paper, we propose a novel difference-based method for testing no effect without 
needing to estimate g or its first derivative.

The difference-based method was primarily developed for the estimation of error 
variance �2 that does not require an estimate of g (Rice 1984; Gasser et al 1986; Hall 
et  al 1990; Tong and Wang 2005; Tong et  al 2013). The idea of differencing has 
also been used in testing the independence of X and � (Einmahl and Van Keilegom 
2008). The �th-order differencing estimator for �2 in (1) is defined as

where the positive integer � is the order of differentiation and (d0,… , d�) are the dif-
ferencing weights that satisfy the regularity conditions 

∑�

j=0
dj = 0 and 

∑�

j=0
d2
j
= 1 . 

In recent years, the difference-based method has been applied to the estimation of 
derivatives in nonparametric regression (Brabanter et al 2013; Wang and Lin 2015; 
Dai et al 2016; Wang et al 2019; Zhang and Dai 2023), the estimation of covariance 
(Bliznyuk et al 2012), and the estimation of time-varying auto-covariance (Cui et al 
2021). With the exception of Yatchew (1999) and Yatchew (2003), the difference-
based method has not been used for the purpose of hypothesis testing. Yatchew 
(2003) proposed a specification test statistic S1 = (n∕4�)1∕2(s2

res
− s2

d
)∕s2

res
 , where 

(1)yi = g(xi) + �i, i = 1,… , n,

(2)H0 ∶ g(x) = constant versus H1 ∶ g(x) ≠ constant.

s2
d
=

1

n − �

n−�∑
i=1

( �∑
j=0

djyj+i

)2

,
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� =
∑�

i=1

�∑�−i

j=0
djdj+i

�2

 and s2
res

= n−1
∑n

i=1

�
yi − m(xi, �̂�)

�2 , for the null hypothesis 
g(x) = m(x, �) where m is a known function with unknown parameters � , against a 
nonparametric alternative. Under the null hypothesis, S1

D
�������→ N(0, 1) as n → ∞ , 

where D
�������→

 denotes convergence in distribution. If the weight is the optimal difference 
sequence (Hall et  al 1990), then the test statistic can be simplified as 
S2 = (n�)1∕2(s2

res
− s2

d
)∕s2

res
 . Under the null hypothesis, S2

D
�������→ N(0, 1) as n → ∞ . To 

apply the specification test to the hypotheses in (2) under the null hypothesis that 
g(x) is a constant function, the estimate of m(x, �̂�) is simply the sample mean of the 
observed yi values. The specification test has a convergence rate close to n−1∕4 for 
any fixed differencing order r (Yatchew, Yatchew 2003, p. 68), which is far slower 
than that of the residual-based tests, i.e. n−1∕2 (Neumeyer and Dette 2003).

To propose a new difference-based test that does not require an estimate of g, we 
first convert the hypothesis of no effect in (2) as a new hypothesis of zero slope in 
a linear model for differences. We then construct three difference-based statistics for 
testing zero slope that are easy to implement and computationally efficient. Our new 
tests can detect local alternatives that converge to the null hypothesis at a rate close to 
n−1∕2 , which was previously achieved only by the residual-based tests as the optimal 
rate. The simulations show that the new tests compare favorably with existing methods. 
Moreover, we also extend the proposed difference-based method to more general 
settings.

The remainder of the paper is organized as follows. In Sect.  2, we present three 
new difference-based test statistics for hypothesis (2) and derive their asymptotic or 
approximate null distributions. In Sect. 3, we conduct simulation studies to evaluate 
the finite-sample performance of the proposed tests and compare them with existing 
methods. In Sect. 4, we apply the difference-based tests to two real data examples to 
illustrate their usefulness in practice. In Sect. 5, we extend the difference-based testing 
method to more general problems, including the test for polynomial functions, the test 
for parallelity of two mean functions, and the test with unequally spaced design points. 
We present the technical results in the Appendix.

2  Difference‑based tests

For simplicity, we consider equally spaced design points with xi = i∕n for i = 1,… , n . 
Define the lag-k Rice estimators as

We further assume that g has a bounded first derivative. Then by the Taylor 
expansion,

sk =
1

2(n − k)

n−k∑
i=1

(
yi+k − yi

)2

, k = 1,… , n − 1.
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where � = ∫ 1

0
[g�(x)]2dx∕2 and dk = k2∕n2 . Now to estimate �2 , for any m = o(n) , 

Tong and Wang (2005) fitted a linear model as

and then applied the fitted intercept �̂� as the final estimate of �2 which can achieve 
the optimal rate in MSE. Tong et  al (2013) further showed that the least squares 
estimator using the linear model (3) is asymptotically normal, root-n consistent, and 
reaches the optimal bound in terms of the estimation variance.

We note, however, that there has been restricted attention to the variance estimation 
in the existing literature, which mainly focused on the estimation of the intercept � . In 
contrast, the estimate of � is only used as a term in the variance estimate, whereas the 
statistical inference for the slope itself is largely overlooked. In this paper, we show 
for the first time that � can indeed play an important role in the hypothesis testing for 
the mean function. Note that the null hypothesis in (2) holds if and only if g�(x) = 0 
for all x ∈ [0, 1] , which is equivalent to � = ∫ 1

0

[
g�(x)

]2
dx∕2 = 0 . This shows that the 

hypotheses in (2) can be converted to the new hypotheses as

To test the null hypothesis in (4), we first derive a weighted least squares estimator 
of � and then establish its asymptotic normality. Following from (3), the weighted 
least squares (WLS) estimator of � is given by

where d̄w =
∑m

k=1
wkdk , wk = (n − k)∕N and N = nm − m(m + 1)∕2 . We choose the 

weight wk = (n − k)∕N because sk is the average of (n − k) squared lag-k differences.
Moreover, the WLS estimator of � can be written as

where y = (y1,… , yn)
T and B = (bij)n×n is a symmetric matrix with elements

E
(
sk
)
= �2 +

1

2(n − k)

n−k∑
i=1

[
g
(
xi+k

)
− g

(
xi
)]2

= �2 +
1

2(n − k)

n−k∑
i=1

[
k

n
g�
(
xi
)
+ o

(
k

n

)]2

= �2 + �dk + o
(
dk
)
,

(3)sk = � + �dk + �k, k = 1,… ,m,

(4)H0 ∶ 𝛽 = 0 versus H1 ∶ 𝛽 > 0.

(5)𝛽 =

∑m

k=1
wksk

�
dk − d̄w

�

∑m

k=1
wk

�
dk − d̄w

�2
,

(6)𝛽 =
1

2N
y
TBy,
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h0 = 0 , and hk = (dk − d̄w)∕
∑m

k=1
wk(dk − d̄w)

2 for k = 1,… ,m . The trace of B is 
tr(B) = 2

∑m

k=1
(n − k)hk = 2N

∑m

k=1
wkhk = 0 . Let also �4 = E(�4)∕�4 , which equals 

3 when the errors are normally distributed. In Appendix B, we establish the asymp-
totic normality for the WLS estimator 𝛽  . Throughout this paper, we take the band-
width m to be an integer. We use the ceiling function, and let ⌈nr⌉ be the smallest 
integer that is greater than or equal to nr.

Theorem 1 Assume that the mean function g(⋅) has a bounded second derivative and 
E(�6) is finite. For any m = ⌈nr⌉ with 2∕3 < r < 1 , the WLS estimator in (6) has the 
asymptotic distribution

where �2
b
= (15∕56)(�4 − 1)�4.

By Theorem  1, the asymptotic variance of 𝛽  is �2
�
= (15∕56)n2−3r(�4 − 1)�4 . 

When the errors are normally distributed, a direct estimate of the asymptotic 
variance is �̂�2

𝛽
= (15∕28)n2−3r�̂�4 , where �̂�2 is a consistent estimator of the error 

variance �2 . However, this direct estimate may not provide an accurate 
approximation when the sample size n is not large enough. For more details, see 
Appendix B, in which we also suggest a more accurate estimate of the error 
variance with a higher-order term:

When m = o(n) , both �̃�2
𝛽
 and �̂�2

𝛽
 are consistent estimators of �2

�
 . We define the 

difference-based test (DBT) statistic for the null hypothesis in (4) as

Theorem  2 Assume that �i
i.i.d.
∼ N(0, �2) and let �̂�2 be a consistent estimator of the 

error variance �2 . Under the assumptions in Theorem 1 and the null hypothesis in 
(4), we have T

D
�������→ N(0, 1) as n → ∞.

By Theorem  2, we then reject the null hypothesis that � = 0 if the observed 
value of T is greater than z� , where � is the significance level and z� is the upper 
� th percentile of the standard normal distribution. To assess the power of the test, 

(7)bij =

⎧
⎪⎨⎪⎩

∑m

k=1
hk +

∑min(i−1,n−i,m)

k=1
hk, 1 ≤ i = j ≤ n,

−h�i−j�, 0 < �i − j� ≤ m,

0, otherwise,

(8)
√
n3r−2

�
𝛽 − 𝛽

�
D
�������→ N

�
0, 𝜎2

b

�
as n → ∞,

(9)�̃�2
𝛽
=

1

4N2

[
15n4

7m
�̂�4 +

45n5

m3
�̂�4
]
=

1

N2

[
15n4

28m
+

45n5

4m3

]
�̂�4.

(10)T =
𝛽

�̃�𝛽
.
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we consider the Pitman local alternative (McManus 1991) that H1n ∶ � = h∕an , 
where an → ∞ . Under H1n , we have

This yields the power function

If an =
√
n3r−2 , the power function �n(h∕an) tends to 1 as h → ∞ . This shows that 

the proposed test statistic T can detect local alternatives that converge to the null 
hypothesis at a rate of 

√
n2−3r . Recall that the specification test in Yatchew (2003) 

can detect local alternatives that converge to the null hypothesis at a rate close to 
n−1∕4 . This shows that the convergence rate of our new test is faster than that of the 
specification test as long as r > 5∕6 . And more importantly, the convergence rate of 
our new test will approach to the optimal rate at n−1∕2 as r → 1 , which was previ-
ously achieved only by the residual-based tests.

When the errors are not normally distributed, �4 is also unknown in the asymptotic 
variance of 𝛽  . To have a valid test statistic in this case, we propose to replace the 
whole unknown term (�4 − 1)�4 = E(�4) − �4 = � − (�2)2 by a consistent estimator 
�̂� − (�̂�2)2 , where �̂�2 is from Tong and Wang (2005) and �̂� is from Evans and Jones 
(2008). To be more specific, we have �̂�2 =

∑m

k=1
wksk − 𝛽d̄w and 

�̂� =
∑n

i=1
[Π4

j=1
(yi − yi(j))]∕n , where i(j) is the index of the jth nearest neighbor of xi 

among x1,… , xn.

Theorem 3 Assume that �i are i.i.d. random variables with mean zero and variance 
�2 . Let �̂�2 and �̂� be consistent estimators of the error variance �2 and the fourth 
moment � , respectively. Define the difference-based test statistic

where

Under the assumptions in Theorem  1 and the null hypothesis in (4), we have 
G

D
�������→ N(0, 1) as n → ∞.

The proofs of Theorems 2 and 3 are given in Appendix C. We note that the results 
in these two theorems hold for any consistent estimators of �2 and � . In addition, for 
the test statistic G, its power function follows the same structure as that of the test 

1

�̃�𝛽

(
𝛽 −

h

an

)
D
�������→ N(0, 1) as n → ∞.

𝜋n

(
h

an

)
= P

(
1

�̃�𝛽
(𝛽 −

h

an
) > z𝛼 −

1

�̃�𝛽

h

an

)
= 1 − Φ

(
z𝛼 −

1

�̃�𝛽

h

an

)
+ o(1).

(11)G =
𝛽

�̌�𝛽g
,

(12)�̌�2
𝛽g

=
1

4N2

[
15n4

14m

(
�̂� − �̂�4

)
+

45n5

m3
�̂�4
]
.
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statistic T, with the only change being the standard error in (9) replaced by the one 
in (12).

Next, we consider the bandwidth m selection in practice. Under the normality 
assumption, following Lemma 2 (a) and Theorem 1 and 2, it is easy to see that the 
mean square error (MSE) of 𝛽  is approximately �̃�2

𝛽
+ O((m + 1)∕(2n − m − 1)) . As 

part of the bias can be computed as �(m + 1)∕(2n − m − 1) , we can select the m that 
minimize the value �MSE(𝛽) = �̃�2

𝛽
+ 𝛽2(m + 1)2∕(2n − m − 1)2 . The method for a 

non-Gaussian random error model is similar. Our simulations show that this method 
works well for most general cases. However, this bandwidth is too large for a rough 
mean function because the bias is large. Note that our test statistics (10) and (11) 
heavily depend on the estimator �̂�2 . Thus we consider the asymptotic optimal band-
width mopt =

(
28n�4∕var

(
�2
))1∕2 and mopt = (14n)1∕2 for normally distributed ran-

dom errors, which are given in Tong and Wang (2005). However, as emphasized in 
Tong and Wang (2005), this bandwidth is still too large for small n or rough g. The 
adjusted bandwidth m = ⌈(1 + � − (�2 + 2�)1∕2)(14n)1∕2⌉ is proposed so that the 
percentage of increase in the higher order terms of MSE of �̂�2 using this bandwidth 
comparing to that of the optimal bandwidth is no more than 100�% . Our simulation 
studies in Sect. 3 indicate that the choice of � with a small value, say � = 0.2 for a 
small sample or � = 0 for a large sample, is enough to make the tests work very 
well. It is worth mentioning that when the mean function is rough, we need to care-
fully choose the bandwidth to make the DBT method work, while other methods 
may perform even worse. See the simulation results in Table 2 in Sect. 3.

Finally, as the fourth moment of the random error � = E(�4) in the test statistic 
(11) is unknown, we also propose a permutation test which does not require an esti-
mate of � . We use 𝛽  given in (5) as the test statistic and approximate its null distri-
bution using permutations based on the fact that the x labels are exchangeable under 
the null hypothesis. For each permutation of x labels, we compute the estimate of � . 
Repeating this process q times, we derive estimates of � denoted as 𝛽∗

1
 , 𝛽∗

2
 , ..., 𝛽∗

q
 . We 

use the empirical distribution of 𝛽∗ ’s as the approximated null distribution and com-
pute the p-value as 

∑q

i=1
I(𝛽 < 𝛽∗

i
)∕q . We reject the null hypothesis (4) if the p-value 

is less than � = 0.05 . We refer to this method as the permutation-based DBT.

3  Simulation studies

In this section, we conduct simulations to evaluate the performance of the 
proposed DBTs and also compare them with some existing methods. To generate 
data from the model (1), we consider a factorial design with two choices of g, 
g1(x) = 1 + 5c(x2 − x) and g2(x) = 1 + c sin(4�x) , and three choices of sample sizes, 
n =30, 50 and 100. For each function, we consider five choices of c = 0, 0.2, 0.5, 0.7, 
and 1.

We first consider Gaussian random errors where �i 
i.i.d.
∼ N(0, �2) with � = 0.3 and 

� = 0.5 for g1(x) and g2(x) , respectively. For the bandwidth selection, we chose the 
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m that minimize �MSE(𝛽) = �̃�2
𝛽
+ 𝛽2(m + 1)2∕(2n − m − 1)2 for g1(x) . For the rough 

mean function g2(x) , we let m = ⌈(1 + � − (�2 + 2�)1∕2)(14n)1∕2⌉ where 
� = (0.2, 0.05, 0) for n = (30, 50, 100) . We further estimate �2 and � using the esti-
mators proposed by Tong and Wang (2005) and Evans and Jones (2008) as men-
tioned in Sect. 2.

We calculate the proportions of rejections by counting the number of rejections 
in 1000 simulations at the significance level � = 0.05 . For ease of presentation, we 
denote DBT-Gau, DBT-Gen, and DBT-Perm as the difference-based test T in (10), G 
in (11), and the permutation method, respectively. For comparison with the residual-
based tests, we also consider the locally most powerful (LMP) test by Cox et  al 
(1988), the permutation test using the generalized F-test (F-Perm) by Raz (1990), 
the specification test with the second order ordinary difference sequence (Spec 
ord) and with the second order optimal difference sequence (Spec opt) by Yatchew 
(2003), and the Kolmogorov-Smirnov type statistic (TKS) by Van Keilegom et  al 
(2008). As far as we know, there are no other tests for no effect that can dominate 
these traditional methods.

Table 1  Proportions of rejection 
with the mean function g

1
(x) 

and Gaussian random errors 
with � = 0.3

Sample size Method c = 0 c = 0.2 c = 0.5 c = 0.7 c = 1

n = 30 F-Perm 0.050 0.089 0.417 0.741 0.937

LMP 0.046 0.048 0.184 0.364 0.752
Spec ord 0.046 0.054 0.171 0.428 0.787
Spec opt 0.050 0.116 0.509 0.848 0.997
TKS 0.100 0.107 0.346 0.536 0.848
DBT-Perm 0.053 0.151 0.707 0.949 0.999
DBT-Gau 0.039 0.153 0.723 0.951 0.999
DBT-Gen 0.038 0.169 0.737 0.958 1

n = 50 F-Perm 0.040 0.110 0.744 0.957 0.984
LMP 0.050 0.074 0.463 0.862 1
Spec ord 0.045 0.058 0.298 0.661 0.971
Spec opt 0.049 0.136 0.732 0.982 1
TKS 0.068 0.096 0.487 0.798 0.981
DBT-Perm 0.039 0.265 0.897 0.993 1
DBT-Gau 0.044 0.221 0.903 0.996 1
DBT-Gen 0.050 0.234 0.918 0.997 1

n = 100 F-Perm 0.049 0.248 0.974 0.992 0.998
LMP 0.046 0.139 0.963 1 1
Spec ord 0.048 0.066 0.547 0.931 1
Spec opt 0.043 0.160 0.937 1 1
TKS 0.024 0.112 0.778 0.979 1
DBT-Perm 0.040 0.412 0.986 1 1
DBT-Gau 0.030 0.388 0.993 1 1
DBT-Gen 0.033 0.404 0.995 1 1
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The simulation results are given in Table 1 for g1(x) with � = 0.3 and in Table 2 
for g2(x) with � = 0.5 . It is evident that DBT-Gau and DBT-Gen outperform the 
other tests in most cases for both mean functions. The superiority of DBTs is 
more profound when the sample size is small. The power of DBTs increases 
much faster than the other methods as c increases, especially for highly oscil-
lating functions. In addition, we note that DBT-Gau and DBT-Gen are able to 
control the type I error rates, while some existing methods have type I error rates 
that exceed the nominal level. Finally, when the normality assumption holds in 
our simulations, DBT-Gau has the smallest type I error and performs very well. 
DBT-Gen has the greatest power in most cases. We have also conducted simula-
tions with other mean functions (not shown to save space), and the comparison 
results remain the same.

For simulations with non-Gaussian random errors, we generate data from the 
model (1) with mean function g1(x) and random errors �i = �i∕10

√
3 , where �i 

follow a t distribution with 3 degrees of freedom. The simulation results are given 
in Table 3. With the non-Gaussian random errors, DBT-Gau and the specification 

Table 2  Proportions of rejection 
with the mean function g

2
(x) 

and Gaussian random errors 
with � = 0.5

Sample size Method c = 0 c = 0.2 c = 0.5 c = 0.7 c = 1

n = 30 F-Perm 0.051 0.068 0.200 0.469 0.858

LMP 0.050 0.072 0.182 0.253 0.369
Spec ord 0.043 0.055 0.247 0.565 0.927
Spec opt 0.051 0.114 0.564 0.894 0.999
TKS 0.097 0.105 0.192 0.273 0.505
DBT-Perm 0.055 0.129 0.584 0.864 0.994
DBT-Gau 0.045 0.131 0.600 0.884 0.997
DBT-Gen 0.047 0.137 0.631 0.902 1

n = 50 F-Perm 0.058 0.083 0.539 0.913 0.988
LMP 0.049 0.096 0.356 0.586 0.872
Spec ord 0.053 0.068 0.427 0.825 0.993
Spec opt 0.049 0.153 0.822 0.995 1.000
TKS 0.062 0.109 0.271 0.558 0.836
DBT-Perm 0.042 0.153 0.72 0.952 0.998
DBT-Gau 0.045 0.163 0.739 0.956 1 
DBT-Gen 0.049 0.171 0.767 0.969 1 

n = 100 F-Perm 0.052 0.181 0.961 0.997 0.999
LMP 0.059 0.183 0.797 0.989 1
Spec ord 0.050 0.079 0.722 0.990 1
Spec opt 0.045 0.202 0.983 1 1
TKS 0.029 0.092 0.605 0.928 1
DBT-Perm 0.051 0.36 0.994 1 1
DBT-Gau 0.051 0.388 0.996 1 1
DBT-Gen 0.048 0.402 0.998 1 1
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test with optimal sequence do not work well all the time as their type I error rates 
are inflated. In contrast, DBT-Gen and DBT-Perm are able to control the type I 
error rates even when the normality assumption is violated while having larger 
power than the other tests, in particular when the sample size is small.

To conclude, we recommend the DBT-Gen test in (11) for practical use or the 
DBT-Gau test in (10) when there is strong evidence showing that the random errors 
are normally distributed.

4  Real data examples

4.1  The adult human gut microbiota and aging

Human gut microbiota is important for modulating host metabolism. Recently, 
some researchers studied the relationship between age and gut microbial differences 
(Zhang et al 2021). We consider a dataset consisting of gut microbial characteristics 
by metagenomic sequencing from 1741 Han Chinese adults aged 26-76. For the 

Table 3  Proportions of rejection 
with non-Gaussian random 
errors

Sample size Method c = 0 c = 0.2 c = 0.5 c = 0.7 c = 1

n = 30 F-Perm 0.046 0.091 0.560 0.809 0.945

LMP 0.048 0.043 0.210 0.495 0.835
Spec ord 0.036 0.065 0.296 0.537 0.865
Spec opt 0.076 0.142 0.696 0.904 0.967
TKS 0.046 0.078 0.392 0.687 0.926
DBT-Perm 0.059 0.209 0.797 0.934 0.981
DBT-Gau 0.059 0.238 0.787 0.941 0.986
DBT-Gen 0.040 0.204 0.755 0.919 0.979

n = 50 F-Perm 0.055 0.158 0.799 0.935 0.986
LMP 0.041 0.096 0.593 0.899 0.983
Spec ord 0.061 0.067 0.427 0.772 0.945
Spec opt 0.068 0.147 0.785 0.955 0.991
TKS 0.029 0.099 0.617 0.903 0.987
DBT-Perm 0.044 0.292 0.873 0.965 0.995
DBT-Gau 0.062 0.309 0.905 0.983 0.992
DBT-Gen 0.032 0.231 0.848 0.960 0.979

n = 100 F-Perm 0.034 0.348 0.973 0.990 0.999
LMP 0.044 0.153 0.943 0.994 0.997
Spec ord 0.064 0.081 0.629 0.919 0.984
Spec opt 0.049 0.214 0.911 0.986 0.999
TKS 0.007 0.100 0.902 0.985 0.997
DBT-Perm 0.040 0.369 0.918 0.978 0.996
DBT-Gau 0.099 0.408 0.966 0.992 0.999
DBT-Gen 0.034 0.294 0.918 0.974 0.991
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richness and diversity analyses, the Alpha diversity quantified by the Shannon 
index was calculated on the relative abundance profiles at gene, species, and KEGG 
(Kyoto Encyclopedia of Genes and Genomes) orthology (KO). Figure 1 shows the 
average Shannon index at each age.

Consider model (1) with yi the average Shannon index and xi age from 26 to 76. 
Without assuming any parametric form of yi and xi , we apply our proposed three 
tests and get the following results. DBT-Perm has test statistic 𝛽 = 5.85 × 10−3 with 
a p-value 0.01, DBT-Gau has test statistic T = 5.10 with a p-value 1.7 × 10−7 , and 
DBT-Gen has test statistic G = 3.65 with a p-value 1.3 × 10−4 . Under the � = 0.05 
level of significance, we reject the null hypothesis and conclude that there is evi-
dence that age and gut microbiota diversity are related.

4.2  The COVID‑19 incubation period and aging

COVID-19, also called SARS-CoV-2, is an infectious disease caused by a newly 
discovered coronavirus. It has been creating a severe pandemic and panic around 
the world. One of the most important epidemiological features of COVID-19 is the 
incubation period, which is important for building up the disease control policies 
(Lauer et al 2020). Some researchers have investigated the relationship between age 
and the incubation period of COVID-19. Tan et al (2020) studied the dataset of all 
confirmed cases admitted to restructured hospitals in Singapore collected from 23 
January 2020 to 2 April 2020, and they concluded that elders (age ≥ 70 years old) 
have significantly longer incubation period than those younger people. However, 
they did not study the relationship for COVID-19 patients under 70 years old. In this 

Fig. 1  Age and gut microbial 
alpha diversity at the KO level
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example, we want to investigate whether the COVID-19 incubation period depends 
on age for patients aged 18 to 68. The dataset contains 225 documented cases of 
infection between 1 January 2020 and 16 January 2020 in China (Liu et al 2020). 
Let yi be the median incubation period and xi be the age from 18 to 68. Figure 2 
shows the scatter plot of yi and xi . Applying the difference-based test, we have the 
following test results. DBT-Perm has test statistic 𝛽 = −0.793 with a p-value 0.58, 
DBT-Gau has test statistic T = −0.199 with a p-value 0.579, and DBT-Gen has test 
statistic G = −0.235 with a p-value 0.593. Under the � = 0.05 significance level, we 
fail to reject the null hypothesis and conclude that the relation between the age and 
the incubation period is not statistically significant for patients under 70 years old.

5  Extension and discussion

We proposed a novel difference-based method to test the hypothesis of no 
relationship between the dependent and independent variables. The difference-
based tests are easy to implement since they do not require an estimate of the mean 
function or its first derivative. We further derived the null distributions of the new 
tests by normal approximation or by permutation and showed that they can detect 
local alternatives that converge to the null at a rate close to n−1∕2 . Simulation 
results also demonstrated that our new tests compare favorably to existing methods, 
especially when the sample size is small.

For simplicity, the current paper has focused on testing no effect in nonparametric 
regression. We note that the method is general and readily extendable to test other 
hypotheses and settings. We now discuss some future research topics.

5.1  Goodness‑of‑fit test for polynomial regression

The proposed method can be extended to test the hypothesis that the mean function 
is a polynomial (Cox et  al 1988; Cox and Koh 1989; Chen 1994; Liu and Wang 
2004; Eubank et  al 2005; Wang 2011a). Specifically, we formulate the null and 
alternative hypotheses as follows:

where r ≥ 2 . In the special case when r = 1 , hypothesis (13) reduces to hypothesis 
(2). To apply the difference-based test, we define the lag-k squared differences of 
reduced data as

where zr
i
= zr−1

i+k
− zr−1

i
 , z1

i
= yi and m = o(n) with m < n∕r . Suppose that the first r 

derivatives g�(x),… , g(r)(x) are bounded. Then,

(13)
H0 ∶ g(x) = a0 + a1x +⋯ + ar−1x

r−1,

versus H1 ∶ g(x) is not a (r − 1)th or lower order polynomial function,

srk =
1(

2r

r

)
(n − rk)

n−rk∑
i=1

(
zr
i+k

− zr
i

)2
, k = 1,… ,m,
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where drk = (dk)
r = (k∕n)2r and �r = ∫ 1

0
(g(r))2dx∕

(
2r

r

)
 . This shows that the 

hypotheses in (13) can be converted to the new hypotheses as

Moreover, following similar arguments as in Sect.  2, we fit the linear regression 
model

and derive the WLS estimator of the slope as

where d̄rw =
∑m

k=1
wrkdrk and wrk = (n − rk)∕Nr with Nr = nm − rm(m + 1)∕2 . 

Finally, we can use 𝛽r to construct a test statistic and then approximate its null distri-
bution by permutation.

5.2  Test the parallelity of two mean functions

Consider the following nonparametric regression model,

where g1 and g2 are two unknown mean functions, and �1i and �2i are independent 
random errors with mean zero and constant variances �2

1
 and �2

2
 , respectively. We are 

interested in the hypothesis that the two mean functions differ by a constant,

where c is a constant. Consider k as a factor with two levels. The above hypothesis 
means no interaction exists between x and k under the smoothing spline ANOVA 
decomposition (Wang 2011b).

Let ỹi = y1i − y2i , g̃(xi) = g1(xi) − g2(xi) , and 𝜖i = 𝜖1i − 𝜖2i . Then ỹi follows 
model (1) with mean function g̃ , and hypothesis (17) reduces to hypothesis (2). 
Consequently, the proposed difference-based method can be applied directly.

5.3  DBT with unequally spaced design

We now provide a brief overview of how to adapt the proposed method for situ-
ations involving unequally spaced designs. Assume that we have a sequence of 
ordered design points x1 < ⋯ < xn such that for each i we have some k = 1,… ,mi , 

E(srk) = �2 + �rdrk + o(drk),

(14)H0 ∶ 𝛽r = 0 versus H1 ∶ 𝛽r > 0.

srk = �2 + �rdrk + �rk

(15)𝛽r =

∑m

k=1
wrksrk

�
drk − d̄rw

�

∑m

k=1
wrk

�
drk − d̄rw

�2
,

(16)yki = gk(xi) + �ki, k = 1, 2; i = 1,… n,

(17)H0 ∶ g1(x) = g2(x) + c versus H1 ∶ g1(x) ≠ g2(x) + c,
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satisfying Ω = {(i, k) ∶ xi+k − xi < L, i + mi ≤ n} with L = o(1) . Then by letting 
zik = (yi+k − yi)

2∕2 , we have

(see supplement S4 in Dai et  al (2017)). This suggests that we can fit the linear 
model

where dik = (xi+k − xi) and �i = (g�(xi))
2∕2 are constant for each i. We further derive

as the WLS estimator of �i , where d̄iw =
∑mi

k=1
wkdik is the weighted average of dik . 

Finally, by taking the average or the Riemann sum of 𝛽i , we have a test statistic for 
hypothesis (2) and can apply the permutation method to generate the null distribu-
tion. Further research is required to derive the asymptotic null distributions and the 
statistical properties of these new test statistics, which is outside the scope of this 
paper.

Appendix 1: Some lemmas and their proofs

Lemma 1 Assume that m → ∞ and m = o(n) . We have 

(a) 
∑m

k=1
hk =

15

16
n + o(n);

(b) 
∑m

k=1
k2hk = n2m + o(n2m);

(c) 
∑i−1

k=1
hk =

15n2

4m4
(i3 − m2i) + O

�
n2

m2

�
+ o

�
n2i

m2

�
;

(d) 
∑m

k=i
khk = O(n2);

(e) 
∑i−1

k=1
k2hk = O(

n2i3

m2
);

(f) 
∑m

k=1
h2
k
=

45n4

4m3
+ o(

n4

m3
);

(g) 
∑m

k=1
kh2

k
=

225n4

32m2
+ o(

n4

m2
).

Proof Following the Appendix in Tong and Wang (2005), we have

E[zik] = �2 +
1

2
(xi+k − xi)

2(g�(xi))
2,

zik = 𝜎2 + d2
ik
𝛽i + 𝜖ik, (i, k) ∈ Ω,

𝛽i =

∑mi

k=1
wkzik(dik − d̄iw)∑mi

k=1
wk(dik − d̄iw)

2

(A1)
m∑
k=1

(dk − d̄w) =
m4

12n3
+ o

(
m4

n3

)
,

(A2)
m∑
k=1

wk(dk − d̄w)
2 =

4m4

45n4
+ o

(
m4

n4

)
,
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(a) By (A1) and (A2), we have 

(b) By (A2) and (A3), we have 

 where 

(c) For 1 ≤ i ≤ m , by (A2) and (A3) we have 

 where 

(d) For 1 ≤ i ≤ m , by (A2) we have 

(e) For 1 ≤ i ≤ m , by (A2) we have 

(A3)d̄w =
m2

3n2
+ o

(
m2

n2

)
.

m�
k=1

hk =

∑m

k=1
(dk − d̄w)∑m

k=1
wk(dk − d̄w)

2
=

m4

12n3
+ o(

m4

n3
)

4m4

45n4
+ o(

m4

n4
)
=

15n

16
+ o(n).

m�
k=1

k2hk =

∑m

k=1
k2(dk − d̄w)∑m

k=1
wk(dk − d̄w)

2
=

4m5

45n2
+ o

�
m5

n2

�
4m4

45n4
+ o(

m4

n4
)
= n2m + o(n2m),

m∑
k=1

k2(dk − d̄w) =
1

n2

(
m5

5
+ O(m4)

)
−
(
m3

3
+ O(m2)

)[
m2

3n2
+ o

(
m2

n2

)]

=
4m5

45n2
+ o

(
m5

n2

)
.

i−1�
k=1

hk =

∑i−1

k=1
(dk − d̄w)∑m

k=1
wk(dk − d̄w)

2

=

1

3n2
(i3 − m2i) + O

�
m2

n2

�
+ o

�
m2i

n2

�
4m4

45n4
+ o(

m4

n4
)

=
15n2

4m4
(i3 − m2i) + O

�
n2

m2

�
+ o

�
n2i

m2

�
,

i−1∑
k=1

(dk − d̄w) =

i−1∑
k=1

(
k

n
)2 − (i − 1)d̄w =

1

3n2
(i3 − m2i) + O

(
m2

n2

)
+ o

(
m2i

n2

)
.

m�
k=i

khk =

∑m

k=i
k(dk − d̄w)∑m

k=1
wk(dk − d̄w)

2
=

∑m

k=i

k3

n2
− d̄w

∑m

k=i
k

∑m

k=1
wk(dk − d̄w)

2
= O(n2).
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(f) By (A2), we have 

(g) By (A2), we have 

  ◻

Lemma 2 Assume that m → ∞ and m = o(n) , and let g = (g(x1),… , g(xn))
T . We 

have 

(a) g
TBg = 2�mn + O(m2);

(b) g
TB2

g = O(n2m).

Proof 

i−1�
k=1

k2hk =

∑i−1

k=1
k2(dk − d̄w)∑m

k=1
wk(dk − d̄w)

2

=

1

n2
(
i5

5
+ O(i4)) − [

m2

3n2
+ o(

m2

n2
)][

i3

3
+ O(i2)]

4m4

45n4
+ o(

m4

n4
)

= O
�
n2i3

m2

�
.

m�
k=1

h2
k
=

∑m

k=1
(dk − d̄w)

2

(
∑m

k=1
wk(dk − d̄w)

2)2

=

∑m

k=1
d2
k
− 2d̄w

∑m

k=1
dk + m(d̄w)

2

(
∑m

k=1
wk(dk − d̄w)

2)2

=

m5

n4
(
1

5
−

2

9
+

1

9
) + o(

m5

n4
)

[
4m4

45n4
+ o(

m4

n4
)]2

=
45n4

4m3
+ o

�
n4

m3

�
.

m�
k=1

kh2
k
=

∑m

k=1
k(dk − d̄w)

2

(
∑m

k=1
wk(dk − d̄w)

2)2

=

∑m

k=1
kd2

k
− 2d̄w

∑m

k=1
kdk + (d̄w)

2
∑m

k=1
k

(
∑m

k=1
wk(dk − d̄w)

2)2

=

m6

n4
(
1

6
−

1

6
+

1

18
) + o(

m6

n4
)

[
4m4

45n4
+ o(

m4

n4
)]2

=
225n4

32m2
+ o

�
n4

m2

�
.
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(a) Let A = (aij)n×n be a symmetric matrix with aij having the same form as bij in (7) 
but h0 = 0 and hk = 1 for k = 1,… ,m . Let D = (dij)n×n is the matrix defined in 
Theorem 1 of Tong and Wang (2005). Then, 

 To simplify the notation, we let gi = g(xi) . We can show that 

 where � = ∫ 1

0
(g�(x))2 dx∕2 . Note also that gTDg = O(m4∕n2) by Lemma 2 in 

Tong et al (2013). Then by (A3), we have 

(b) Noting that B is a symmetric matrix, we let gTB2
g = (Bg)T (Bg) = qTq , where 

q = Bg = (q1,… , qn)
T . For i ∈ [1,m] , by parts (b), (d) and (e) of Lemma 1, we 

have 

g
TBg =

g
T (A − D)g

d̄w
.

g
TAg =

m∑
k=1

n−k∑
i=1

(gi+k − gi)
2

=

m∑
k=1

n−k∑
i=1

[
k2

n2
(g�

i
)2 + O

(
k3

n3

)]

=

m∑
k=1

k2

n2

n−k∑
i=1

(g�
i
)2 +

m∑
k=1

O
( (n − k)k3

n3

)

=

m∑
k=1

k2

n

[
1

n

n∑
i=1

(g�
i
)2 −

1

n

n∑
i=n−k+1

(g�
i
)2
]
+ O

(
m4

n2

)

=

m∑
k=1

k2

n

[
2� + O

(
k

n

)]
+ O

(
m4

n2

)

=
2�m3

3n
+ O

(
m4

n2

)
,

g
TBg =

2�m3

3n
+ O(

m4

n2
)

m2

3n2
+ o(

m2

n2
)

= 2�mn + O(m2).
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 Similary, we can show that qi = O(n) for i ∈ [n − m + 1, n] . While for 
i ∈ [m + 1, n − m] , by Lemma 1(b) we have 

 Taken together the above results, it yields that 

  ◻

Lemma 3 Assume that m → ∞ and m = o(n) . We have 

(a) 
∑n

i=1
b2
ii
=

15n4

14m
+ o(

n4

m
);

(b) 
∑n

i=1

∑n

j=1,j≠i b
2
ij
=

45n5

2m3
+ o(

n5

m3
).

Proof 

(a) By parts (a) and (c) of Lemma 1, we have 

qi =

i−1∑
k=1

hk(gi − gi−k) −

m∑
k=1

hk(gi+k − gi)

=

i−1∑
k=1

hk

(
k

n
g�
i
−

k2

2n2
g��
i
+ o

( k2
n2

))
−

m∑
k=1

hk

(
k

n
g�
i
+

k2

2n2
g��
i
+ o

( k2
n2

))

= −
g�
i

n

m∑
k=i

khk −
[ g��

i

2n2

( i−1∑
k=1

k2hk +

m∑
k=1

k2hk
)]

+ o
(
1

n

m∑
k=i

k2hk

)

= O(n) + O(m) + O
(
i3

m2

)
+ o(m)

= O(n).

qi =

m�
k=1

hk(gi − gi−k) −

m�
k=1

hk(gi+k − gi)

=

m�
k=1

hk

�
k

n
g�
i
−

k2

2n2
g��
i
+ o

�
k2

n2

��
−

m�
k=1

hk

�
k

n
g�
i
+

k2

2n2
g��
i
+ o

�
k2

n2

��

= −
1

n2
g��
i

m�
k=1

k2hk + o
�∑m

k=1
k2hk

n2

�

= O(m).

g
TB2

g =

m∑
i=1

q2
i
+

n−m∑
i=m+1

q2
i
+

n∑
i=n−m+1

q2
i
= O(n2m).
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(b) By parts (f) and (g) of Lemma 1, we have 

  ◻

Appendix 2: Proof of Theorem 1

Proof Let g = (g(x1),… , g(xn))
T and � = (�1,… , �n)

T . By (1) and (6), we have

From Lemma 2(a) we have

Using Lemma 2(b), we have E(gTB�∕N)2 = �2
g
TB2

g∕N2 = O(1∕m) . This leads to

n∑
i=1

b2
ii
= 2

m∑
i=1

( m∑
k=1

hk +

i−1∑
k=1

hk
)2

+

n−m∑
i=m+1

(
2

m∑
k=1

hk
)2

= 2

m∑
i=1

[
15

16
n + o(n) +

15n2

4m4
(i3 − m2i) + O

(
n2

m2

)
+ o

(
n2i

m2

)]2

+ 4(n − 2m)
[
15

16
n + o(n)

]2

= 2
(
15

16

)2

n2m +
(
15n2

4m4

)2( m∑
i=1

i6 + m4

m∑
i=1

i2 − 2m2

m∑
i=1

i4
)

+
152n3

32m4

( m∑
i=1

i3 − m2

m∑
i=1

i
)
+ o

[
n4

m6

( m∑
i=1

i4 − m2

m∑
i=1

i2
)]

+ 4
[(

15

16

)2

n3 + o(n3)
]

=
15n4

14m
+ o

(
n4

m

)
.

n∑
i=1

n∑
j=1,j≠i

b2
ij
= 2

m∑
k=1

(n − k)h2
k

= 2n
[
45n4

4m3
+ o

(
n4

m3

)]
− 2

[
225n4

32m2
+ o

(
n4

m2

)]

=
45n5

2m3
+ o

(
n5

m3

)
.

𝛽 =
g
TBg

2N
+

g
TB�

N
+

�TB�

2N
.

g
TBg

2N
=

2�mn + O(m2)

2N
= � + O

(
m

n

)
.

g
TB�

N
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�
1√
m

�
.
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Let �TB�∕(2N) = �TC� − �TU� , where the elements of matrix C are

and U = diag(u1,⋯ , un) with ui =
∑m+1

k=min{i,n+1−i,m+1}
hk∕(2N) , for i = 1,… , n and 

hm+1 = 0 . Let c0 =
∑m

k=1
hk∕N , ci−j = cj−i = −h|i−j|∕(2N) for 1 ≤ |i − j| ≤ m , and 

ci−j = cj−i = 0 for |i − j| > m . Then �TC� =
∑n

i=1

∑n

j=1
ci−j�i�j , where �i are i.i.d. 

with mean zero. Thus by parts (a) and (f) of Lemma 1,

as m = ⌈nr⌉ with 2∕5 ≤ r < 1 . Assuming E(𝜖6) < ∞ , by Theorem  2 in Whittle 
(1962), �TC� is asymptotically normally distributed.

We have �TU� =
∑n

i=1
ui�

2
i
 . Let Xi = ui�

2
i
 , then X1,X2,… ,Xn are independent ran-

dom variables, where Xi =
∑m

k=i
hk�

2
i
∕(2N) for 1 ≤ i ≤ m , Xi =

∑m

k=n−i+1
hk�

2
i
∕(2N) 

for n − m + 1 ≤ i ≤ n , and Xi = 0 for m + 1 ≤ i ≤ n − m . For 1 ≤ i ≤ m , using parts 
(a) and (c) of Lemma 1 we have

as m = ⌈nr⌉ with 1∕2 < r < 1 . For n − m + 1 ≤ i ≤ n , the results are similar. It is 
intuitive to show that for 1 ≤ i ≤ m , the variance of Xi is

as n → ∞ and m = ⌈nr⌉ with 1∕2 < r < 1 . We have similar results for 
n − m + 1 ≤ i ≤ n , and Var(Xi) = 0 for m + 1 ≤ i ≤ n − m . Noting also that ∑m

i=1
Var(Xi) =

∑n

i=n−m+1
Var(Xi) , we can derive the sum of variance as

cij =

⎧
⎪⎨⎪⎩

∑m

k=1
hk∕N, 1 ≤ i = j ≤ n,

−h�i−j�∕(2N), 0 < �i − j� ≤ m,

0, otherwise,

∞�
−∞

c2
k
=

(
∑m

k=1
hk)

2

N2
+ 2

m�
k=1

h2
k

4N2
=

O(n2)

O(n2m2)
+

O(n4∕m3)

O(n2m2)
= O

�
1

m2

�
+ O

�
n2

m5

�
< ∞,

E[Xi] =
𝜎2

2N

m∑
k=i

hk =
𝜎2

2N

( m∑
k=1

hk −

i−1∑
k=1

hk

)

=
15𝜎2

8

(
1

4m
−

ni3

m5
+

ni

m3

)
+ O

(
n

m3

)
+ o

(
1

m

)
+ o

(
ni

m3

)
< ∞,

Var(Xi) = E(X2
i
) − E(Xi)

2 =
�∑m

k=i
hk

2N

�2

[E(𝜖4
i
) − 𝜎4]

= (𝛾4 − 1)𝜎4

�
15

8

�
1

4m
−

ni3

m5
+

ni

m3

�
+ O

�
n

m3

�
+ o

�
1

m

�
+ o

�
ni

m3

��2
< ∞,
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Thus s2
n
 is finite as m = ⌈nr⌉ with 2∕3 ≤ r < 1 . Moreover, we have

and

where �0 and �1 are some constants and m → ∞ with n → ∞ . Thus

By the Lyapunov CLT, �TU� is asymptotically normally distributed. Therefore, 
�TB�∕(2N) is asymptotically normally distributed. The mean of �TB�∕(2N) can be 
shown to be

and the variance is

s2
n
=

n∑
i=1

Var(Xi) = 2

m∑
i=1

Var(Xi)

= 2(�4 − 1)�4

m∑
i=1

[
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8

(
1

4m
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m5
+

ni
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(
n
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(
1

m

)
+ o

(
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m3

)]2
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1
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+
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+

n2i2
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−

2n2i4

m8
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m3
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1
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2
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(
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)
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(�4 − 1)�4 n

2
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(
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)
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= O

(
n3
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)
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�
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=

1

4N2

[ n∑
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Using parts (a) and (b) of Lemma 3 and combining the above results, we have

where m = ⌈nr⌉ with 2∕3 < r < 1 . This then leads to

as n → ∞ , where �b =
√
15(�4 − 1)�4∕56 .   ◻

Appendix 3: Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2 The estimated error variance of 𝛽  given in (9) can be written as 
�̃�2
𝛽
= 𝜏n�̂�

4 . As n → ∞ , �n → (15∕28)n2−3r with m = ⌈nr⌉ in (9). Let �̂�2 be a consistent 
estimator of �2 , and �2

�
= (15∕28)n2−3r�4 . Under Theorem 1 and the null hypothesis 

H0 in (4), we have 𝛽∕𝜎𝛽
D
�������→ N(0, 1) when the random errors are normally distributed. 

In addition, we have 𝜎𝛽∕�̃�𝛽 → 1 as n → ∞ . Thus by Slutsky’s theorem,

  ◻

Proof of Theorem 3 Given that �̂� and �̂�2 are consistent estimators of � and �2 respec-
tively, we note that �̌�2

𝛽g
 in (12) is also a consistent estimator of 

�2
�
= (15∕56)n2−3r(� − (�2)2) . Therefore under Theorem 1 and the null hypothesis 

H0 in (4), by Slutsky’s theorem we have

  ◻
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