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Abstract
We propose a likelihood ratio test framework for testing normal mean vectors in

high-dimensional data under two common scenarios: the one-sample test and the

two-sample test with equal covariance matrices. We derive the test statistics under the

assumption that the covariance matrices follow a diagonal matrix structure. In com-

parison with the diagonal Hotelling’s tests, our proposed test statistics display some

interesting characteristics. In particular, they are a summation of the log-transformed

squared 𝑡-statistics rather than a direct summation of those components. More impor-

tantly, to derive the asymptotic normality of our test statistics under the null and local

alternative hypotheses, we do not need the requirement that the covariance matrices

follow a diagonal matrix structure. As a consequence, our proposed test methods are

very flexible and readily applicable in practice. Simulation studies and a real data

analysis are also carried out to demonstrate the advantages of our likelihood ratio test

methods.
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1 INTRODUCTION

In high-dimensional data analysis, it is often necessary to

test whether a mean vector is equal to another vector in the

one-sample case, or to test whether two mean vectors are

equal to each other in the two-sample case. One such exam-

ple is to test whether two gene sets, or pathways, have equal

expression levels under two different experimental conditions.

Given the two normal random samples,𝑿1,… ,𝑿𝑛1
∈ ℝ𝑝 and

𝒀1,… , 𝒀𝑛2 ∈ ℝ𝑝, one well-known method for testing whether

their mean vectors are equal is Hotelling’s 𝑇 2 test,

𝑇 2 =
𝑛1𝑛2

𝑛1 + 𝑛2
(𝑿̄ − 𝒀 )𝑇 𝑆−1(𝑿̄ − 𝒀 ), (1)

where 𝑿̄ and 𝒀 are the sample mean vectors and 𝑆 is the

pooled sample covariance matrix. Hotelling’s 𝑇 2 test is well-

behaved and has been extensively studied in the classical low-

dimensional setting. However, this classic test may not per-

form well or may not even be applicable to high-dimensional

data with a small sample size. Specifically, it suffers from the

singularity problem because the sample covariance matrix 𝑆

is singular when the dimension is larger than the sample size.

To overcome the singularity problem in Hotelling’s 𝑇 2

test, Bai and Saranadasa (1996) replaced the sample covari-

ance matrix in (1) with the identity matrix, so that their

test statistic is essentially the same as (𝑿̄ − 𝒀 )𝑇 (𝑿̄ − 𝒀 ).

Following their method, Chen and Qin (2010) and Ahmad

(2014) proposed some 𝑈 -statistics for testing whether two

mean vectors are equal. These test methods were referred to

as the unscaled Hotelling’s tests in Dong et al. (2016) As an

alternative, Chen et al. (2011) and Li et al. (2016) proposed

replacing the inverse sample covariance matrix 𝑆−1 with the

regularized estimator (𝑆 + 𝜆𝐼𝑝)
−1 in Hotelling’s test statistic,

where 𝐼𝑝 is the identity matrix and 𝜆 > 0 is a regularization
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parameter. Lopes et al. (2011) proposed a random projection

technique to estimate the sample covariance matrix. Specif-

ically, they replaced 𝑆−1 in Hotelling’s test statistic with

𝐸−1
𝑅
{𝑅(𝑅𝑇𝑆𝑅)−1𝑅𝑇 }, where 𝑅 is a random matrix of size

𝑝 × 𝑘 and 𝐸𝑅(⋅) is the expectation operator over the distribu-

tion. The random projection technique was further explored

by, for example, Thulin (2014), Srivastava (2016), and Wei et

al. (2016). Dong et al. (2016) referred to the test methods in

this category as the regularized Hotelling’s tests.

In addition to the aforementioned methods, replacing the

sample covariance matrix with a diagonal sample covariance

matrix is another popular approach to improving Hotelling’s

𝑇 2 test. In particular, Wu et al. (2006), Srivastava and

Du (2008), and Srivastava (2009) considered the diagonal
Hotelling’s test statistic:

𝑇 2
diag,2

=
𝑛1𝑛2

𝑛1 + 𝑛2
(𝑿̄ − 𝒀 )𝑇 {diag(𝑆)}−1(𝑿̄ − 𝒀 ). (2)

Recently, Srivastava et al. (2013), Feng et al. (2015), and

Gregory et al. (2015) also considered the diagonal Hotelling’s

tests under the assumption of unequal covariance matrices.

Their test statistics essentially follow the diagonal structure in

(2), (𝑿̄ −𝒀 )𝑇 {diag(𝑆1)∕𝑛1 +diag(𝑆2)∕𝑛2}
−1(𝑿̄ −𝒀 ), where

𝑆1 and 𝑆2 are two sample covariance matrices. Park and Park

and Ayyala (2013) modified the diagonal Hotelling’s test

statistic (2) based on the idea of leave-out cross-validation.

Dong et al. (2016) proposed a shrinkage-based Hotelling’s

test that replaced the diagonal elements of the sample covari-

ance matrix in (2) with some improved variance estimates.

To summarize, the diagonal Hotelling’s tests are popular in

practice for several reasons. First, since a diagonal matrix is

always invertible for nonzero variance estimates, the singu-

larity problem in the classic test is circumvented. Second, the

diagonal Hotelling’s tests are scale transformation invariant

tests. As suggested by Park and Ayyala (2013), the scale

transformation invariant tests usually provide a better per-

formance than the orthogonal transformation invariant tests

including the unscaled Hotelling’s tests and the regularized

Hotelling’s tests, especially when the variances of the signal

components are small and the variances of the noise com-

ponents are large. Last but not least, a diagonal covariance

matrix assumption is also popular in the high-dimensional

literature, for example, in Dudoit et al. (2002), Bickel and

Levina (2004), and Huang et al. (2010)

Note that Hotelling’s test statistic originated from the like-

lihood ratio test in the classical setting when 𝑝 is smaller than

𝑛. Recently, researchers have also applied the likelihood ratio

test method to analyze high-dimensional data. For instance,

Jiang and Yang (2013) and Jiang and Qi (2015) tested mean

vectors and covariance matrices of normal distributions using

the likelihood ratio test method, under the setting that 𝑝 is

smaller than 𝑛 but in a way that allows 𝑝∕𝑛 → 1. Zhao and Xu

(2016) proposed a generalized high-dimensional likelihood

ratio test for the normal mean vector by a modified union-

intersection method. Städler and Mukherjee (2017) provided a

high-dimensional likelihood ratio test for the two-sample test

based on sample splitting.

Following the diagonal matrix structure and the likeli-

hood ratio test method, we propose a new test framework

for high-dimensional data with a small sample size. Unlike

the existing diagonal Hotelling’s tests, in which the sample

covariance matrix 𝑆 was directly replaced with the diagonal

matrix diag(𝑆), our likelihood ratio test statistics are a sum-

mation of the log-transformed squared 𝑡-statistics, rather than

a direct summation of those components. When the sample

size is small, the standard 𝑡 tests may be unreliable due to the

unstable variance estimates. As a remedy, our proposed tests

use the log-transformed squared 𝑡-statistics and, consequently,

provide more stable test statistics so that type I error rates are

better controlled for small sample sizes. We demonstrate by

simulation that our proposed tests are robust in terms of con-

trolling the type I error rate at the nominal level in a wide

range of settings.

The rest of the paper is organized as follows. In Section

2, we propose the diagonal likelihood ratio test method for

the one-sample case. The asymptotic distributions of the test

statistics are also derived as 𝑝 tends to infinity under the null

and local alternative hypotheses, respectively. In Section 3, we

propose the diagonal likelihood ratio test method for the two-

sample case and derive some asymptotic results, including the

asymptotic null distribution and power. In Section 4, we con-

duct simulation studies to evaluate the proposed tests and to

compare them with existing methods. We apply the proposed

tests to a real data example in Section 5, and conclude the

paper by providing a short summary and some future research

directions in Section 6. The technical proofs are provided in

the Web Appendix.

2 ONE-SAMPLE TEST

2.1 Diagonal LRT statistic
To illustrate the main idea of the diagonal likelihood ratio test

method, we consider the one-sample test for a mean vector.

Let 𝑿𝑖 = (𝑋𝑖1, 𝑋𝑖2,,… , 𝑋𝑖𝑝)
𝑇 , 𝑖 = 1,… , 𝑛, be independent

and identically distributed (i.i.d.) random vectors from the

multivariate normal distribution𝑁𝑝(𝝁,Σ), where𝝁 is the pop-

ulation mean vector andΣ is the population covariance matrix.

In the one-sample case, for a given vector 𝝁0, we test the

hypothesis,

𝐻0 ∶ 𝝁 = 𝝁0 versus 𝐻1 ∶ 𝝁 ≠ 𝝁0. (3)

Our new likelihood ratio test statistic is based on the

assumption that the covariance matrix follows a diagonal
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matrix structure, that is, Σ = diag(𝜎2
11
,… , 𝜎2

𝑝𝑝). In Web

Appendix A.1, we show that the likelihood ratio test statistic

for hypothesis (3) is

Λ𝑛 =

max
Σ

𝐿(𝝁0,Σ)

max
𝝁,Σ

𝐿(𝝁,Σ)
=

∏𝑝

𝑗=1

{∑𝑛
𝑖=1(𝑋𝑖𝑗 − 𝑋̄𝑗)

2
}𝑛∕2

∏𝑝

𝑗=1

{∑𝑛
𝑖=1(𝑋𝑖𝑗 − 𝜇0𝑗)

2
}𝑛∕2

,

where 𝑋̄𝑗 =
∑𝑛

𝑖=1 𝑋𝑖𝑗∕𝑛 are the sample means, and 𝑠2
𝑗
=∑𝑛

𝑖=1 (𝑋𝑖𝑗 − 𝑋̄𝑗)
2∕(𝑛 − 1) are the sample variances. Taking

the log transformation, we derive that

−2log(Λ𝑛) = 𝑛

𝑝∑
𝑗=1

log

[
1 + 𝑛

(
𝑋̄𝑗 − 𝜇0𝑗

)2
∕

{
(𝑛 − 1)𝑠2𝑗

}]
.

This suggests that the new test statistic is

𝑇1 = 𝑛

𝑝∑
𝑗=1

log

{
1 +

𝑛(𝑋̄𝑗 − 𝜇0𝑗)
2

(𝑛 − 1)𝑠2
𝑗

}
=𝑛

𝑝∑
𝑗=1

log

(
1 +

𝑡2
𝑛𝑗

𝜈1

)
,

(4)

where 𝑡𝑛𝑗 =
√

𝑛(𝑋̄𝑗 − 𝜇0𝑗)∕𝑠𝑗 are the standard 𝑡-statistics for

the one-sample test with 𝜈1 = 𝑛 − 1 degrees of freedom. We

refer to the diagonal likelihood ratio test statistic in (4) as the

DLRT statistic.

Under the null hypothesis, it is easy to verify that 𝑛 log
(
1+

𝑡2
𝑛𝑗
∕𝜈1

)
= 𝑡2

𝑛𝑗
+ 𝑂𝑝(1∕𝑛). Further, we have 𝑇1 =

∑𝑝

𝑗=1
𝑡2
𝑛𝑗

+

𝑂𝑝(𝑝∕𝑛). So if 𝑝 increases at such a rate that 𝑝 = 𝑜(𝑛), then we

have the following approximation:

𝑇1 ≈

𝑝∑
𝑗=1

𝑡2𝑛𝑗 = 𝑛(𝑿̄ − 𝝁0)
𝑇
{
diag(𝑠2

1
,… , 𝑠2𝑝)

}−1

(𝑿̄ − 𝝁0).

Thus, as a special case, our proposed DLRT statistic reduces

to the diagonal Hotelling’s test statistic in the one-sample

case to which a direct summation of the squared 𝑡-statistics

is applied.

2.2 Null distribution
For ease of notation, let 𝑈𝑛𝑗 = 𝑛 log(1 + 𝑡2

𝑛𝑗
∕𝜈1) for 𝑗 =

1,… , 𝑝. In this section, we derive the asymptotic null distri-

bution of the proposed DLRT statistic. To derive the limiting

distribution, we first present a lemma; the proof is in Web

Appendix A.2.

Lemma 1. For the gamma function Γ(𝑥) = ∫ ∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡, let

Ψ(𝑥) = Γ′(𝑥)∕Γ(𝑥) be the digamma function. Also, let 𝐷(𝑥) =

Ψ{(𝑥+1)∕2}−Ψ(𝑥∕2),𝑚1 = 𝑛𝐷(𝜈1), and𝑚2 = 𝑛2{𝐷2(𝜈1)−

2𝐷′(𝜈1)}.

(𝑎) For any 𝑛 ≥ 2, we have 𝐸(𝑈𝑛𝑗) = 𝑚1 and Var(𝑈𝑛𝑗) =

𝑚2 − 𝑚2
1
.

(𝑏) As 𝑛 → ∞, we have 𝐸(𝑈𝑛𝑗) → 1 and Var(𝑈𝑛𝑗) → 2.

Despite 𝑇1 has an additive form of log-transformed

squared 𝑡-statistics, our derivation of its limiting distribution

needs to account for the dependence among {𝑈𝑛1,… , 𝑈𝑛𝑝}.

For example, the scaling parameter of 𝑇1 may need to incorpo-

rate the information of Cov(𝑈𝑛,𝑗 , 𝑈𝑛,𝑗+𝑘). We therefore need

additional assumptions when establishing the asymptotic nor-

mality of the DLRT statistic. Let 𝛼( ,) = sup{‖𝑃 (𝐴∩𝐵) −

𝑃 (𝐴)𝑃 (𝐵)‖∶𝐴 ∈  , 𝐵 ∈ } be the strong mixing coefficient

between two 𝜎 fields,  and , that measures the degree of

dependence between the two 𝜎 fields. We also assume that

the following two regularity conditions hold for the sequence

{𝑈𝑛𝑗, 𝑗 = 1, 2,…}:

(C1) Let 𝛼(𝑟) = sup{𝛼(𝑘
1
,𝑝

𝑘+𝑟
)∶ 1 ≤ 𝑘 ≤ 𝑝 − 𝑟}, where

𝑏
𝑎 = 𝑏

𝑎,𝑛 = 𝜎{𝑈𝑛𝑗 ∶ 𝑎 ≤ 𝑗 ≤ 𝑏}. Assume that the

stationary sequence {𝑈𝑛𝑗} satisfies the strong mix-

ing condition such that 𝛼(𝑟) ↓ 0 as 𝑟 → ∞, where ↓
denotes the monotone decreasing convergence.

(C2) Suppose that
∑∞

𝑟=1 𝛼(𝑟)
𝛿∕(2+𝛿) < ∞ for some 𝛿 >

0, and for any 𝑘 ≥ 0, lim𝑝→∞

∑𝑝−𝑘

𝑗=1
Cov(𝑈𝑛𝑗,

𝑈𝑛,𝑗+𝑘)∕(𝑝 − 𝑘) = 𝛾(𝑘) exists.

The following theorem establishes the asymptotic distri-

bution of the DLRT statistic under the null hypothesis.

Theorem 1. Let 𝑿1,… ,𝑿𝑛 be i.i.d. random vectors from
𝑁𝑝(𝝁,Σ). If the sequence {𝑈𝑛𝑗} is stationary and satisfies
conditions (C1) and (C2), then under the null hypothesis, we
have for any fixed 𝑛 ≥ 2,

𝑇1 − 𝑝𝑚1

𝜏1
√

𝑝


⟶ 𝑁(0, 1) as 𝑝 → ∞

where

⟶ denotes convergence in distribution, and 𝜏2

1
=

𝑚2 − 𝑚2
1
+ 2

∑∞

𝑘=1 𝛾(𝑘).

The proof of Theorem 1 is given in Web Appendix

A.3. In Theorem 1, we do not require Σ to follow a diag-

onal matrix structure. To derive the limiting distribution of

the DLRT statistic under a general covariance matrix struc-

ture, we impose the mixing condition (C1) which implies

a weak dependence structure in the data. Specifically, not-

ing that 𝑇1 =
∑𝑝

𝑗=1
𝑈𝑛𝑗 , if the autocorrelation function of

{𝑈𝑛1,… , 𝑈𝑛𝑝} decays rapidly as the lag increases, 𝑇1 will

converge to the standard normal distribution under appropri-

ate centering and scaling. Finally, we note that similar mixing

conditions were also adopted in Gregory et al. (2015) and

Zhao and Xu (2016) The asymptotic variance of 𝑝1∕2𝑇1, 𝜏2
1
,

depends on the autocovariance of the sequence {𝑈𝑛1, 𝑈𝑛2,…}

and is unknown. To establish the null distribution in practice,

we need an estimate, 𝜏2
1
, to replace 𝜏2

1
. In spectrum analysis,

under the condition (C2), we note that
∑∞

𝑘=−∞ 𝛾(𝑘) = 2𝜋𝑓 (0),
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where 𝑓 (𝑤) is a spectral density function defined as 𝑓 (𝑤) =

(2𝜋)−1
∑∞

𝑘=−∞ 𝑒𝑖𝑤𝑘𝛾(𝑘) for 𝑤 ∈ [−𝜋, 𝜋]. Therefore, we only

need an estimate of 𝑓 (0).

The estimation of 𝑓 (𝑤) has been extensively studied (eg,

Bühlmann, 1996; Paparoditis and Politis, 2012). The tradi-

tional kernel estimator with a lag-window form is defined

as

𝑓 (𝑤) = (2𝜋)−1
∞∑

𝑘=−∞

𝑒𝑖𝑤𝑘𝜆(𝑘∕ℎ)𝛾̂(𝑘),

where 𝛾̂(𝑘) = 𝑝−1
∑𝑝−𝑘

𝑗=1
(𝑈𝑛𝑗 − 𝑇1)(𝑈𝑛(𝑗+𝑘) − 𝑇1) is the sam-

ple autocovariance and 𝑇1 = 𝑇1∕𝑝. We apply the Parzen

window(Parzen, 1961) to determine the lag-window 𝜆(𝑥)

throughout the paper, where 𝜆(𝑥) = 1 − 6𝑥2 − 6|𝑥|3 if |𝑥| <
1∕2, and 𝜆(𝑥) = 2(1 − |𝑥|)3 if 1∕2 ≤ |𝑥| < 1, and 𝜆(𝑥) = 0 if|𝑥| ≥ 1. Finally, we estimate 𝜏2

1
as

𝜏2
1
= 2𝜋𝑓 (0) = 2

∑
0<𝑘≤ℎ

𝜆(𝑘∕ℎ)𝛾̂(𝑘) + 𝛾(0),

where ℎ is the lag-window size, and 𝛾(0) = Var(𝑈𝑛𝑗) = 𝑚2 −

𝑚2
1
.

Corollary 1. Let 𝑿1,… ,𝑿𝑛 be i.i.d. random vectors from
𝑁𝑝(𝝁,Σ) and assume that Σ is a diagonal matrix. Under the
null hypothesis, we have the following asymptotic results:

(𝑎) For any fixed 𝑛 ≥ 2, (𝑇1 − 𝑝𝑚1)∕

√
𝑝(𝑚2 − 𝑚2

1
)


⟶

𝑁(0, 1) as 𝑝 → ∞.
(𝑏) If 𝑝 increases at such a rate that 𝑝 = 𝑜(𝑛2𝑘), then for the

given positive integer 𝑘 < 𝜈1∕2,

(𝑇1 − 𝑝𝜉𝑘)∕
√
2𝑝


⟶ 𝑁(0, 1) as (𝑛, 𝑝) → ∞,

where 𝜉𝑘 = 𝑛{𝑎1 − 𝑎2∕2 +⋯ + (−1)𝑘+1𝑎𝑘∕𝑘} and 𝑎𝑘 =∏𝑘
𝑖=1{(2𝑖 − 1)∕(𝜈1 − 2𝑖)}.

The proof of Corollary 1 is given in Web Appendix A.4.

This corollary defines asymptotic normality of the DLRT

statistic for two scenarios under the diagonal covariance

matrix assumption: the result from (a) establishes the asymp-

totic null distribution when 𝑛 is fixed but 𝑝 is large, and the

result from (b) establishes the asymptotic null distribution

when 𝑛 and 𝑝 are both large.

2.3 Statistical power
To derive the asymptotic power of the proposed DLRT statis-

tic for the one-sample test, we consider the local alternative

𝝁 − 𝝁0 = 𝜹1∕
√

𝑛, (5)

where 𝜹1 = (𝛿11,… , 𝛿1𝑝)
𝑇 . Assume that 𝚫1 =

(Δ11,… ,Δ1𝑝)
𝑇 = (𝛿11∕𝜎11,… , 𝛿1𝑝∕𝜎𝑝𝑝)

𝑇 , with all of

the components uniformly bounded such that

Δ2
1𝑗

⩽ 𝑀0, for 𝑗 = 1,… , 𝑝, (6)

where 𝜎2
𝑗𝑗

are the diagonal elements ofΣ, and 𝑀0 is a constant

independent of 𝑛 and 𝑝. Then we have the following theorem.

Theorem 2. Let 𝑿1,… ,𝑿𝑛 be i.i.d. random vectors from
𝑁𝑝(𝝁,Σ) and assume that 𝑝 increases at such a rate that 𝑝 =

𝑜(𝑛2). Let 𝑧𝛼 be the upper 𝛼th percentile such that Φ(𝑧𝛼) =

1 − 𝛼, where Φ(⋅) is the cumulative distribution function of
the standard normal distribution. If the sequence {𝑈𝑛𝑗} is sta-
tionary and satisfies conditions (C1) and (C2), then under the
local alternative (5) and condition (6), the asymptotic power
of the level 𝛼 test is

𝛽(𝑇1) = 1 − Φ

⎛⎜⎜⎜⎝𝑧𝛼 −
𝚫𝑇
1
𝚫1∕

√
𝑝√

𝜏2
1

⎞⎟⎟⎟⎠ as (𝑛, 𝑝) → ∞,

and hence 𝛽(𝑇1) → 1 if
√

𝑝 = 𝑜
(∑𝑝

𝑗=1
𝛿2
1𝑗
∕𝜎2

𝑗𝑗

)
, and 𝛽(𝑇1) →

𝛼 if
∑𝑝

𝑗=1
𝛿2
1𝑗
∕𝜎2

𝑗𝑗
= 𝑜(

√
𝑝).

The proof of Theorem 2 is given in Web Appendix A.5. If

the true mean differences are dense but small such as the stan-

dardized signals (𝜇1𝑗 − 𝜇0𝑗)∕𝜎𝑗𝑗 = 𝛿0𝑝
−1∕2 with the constant

𝛿0 > 0, then the asymptotic power will increase towards 1 as

(𝑛, 𝑝) → ∞.

3 TWO-SAMPLE TEST

In this section, we consider the two-sample test for

mean vectors with equal covariance matrices. Let 𝑿𝑖 =

(𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑝)
𝑇 , 𝑖 = 1,… , 𝑛1, be i.i.d. random vectors

from 𝑁𝑝(𝝁1,Σ), and 𝒀𝑘 = (𝑌𝑘1, 𝑌𝑘2,… , 𝑌𝑘𝑝)
𝑇 , 𝑘 = 1,… , 𝑛2,

be i.i.d. random vectors from 𝑁𝑝(𝝁2,Σ), where 𝝁1 and 𝝁2 are

two population mean vectors and Σ is the common covariance

matrix. For ease of notation, let 𝑁 = 𝑛1 + 𝑛2 and assume that

lim𝑁→∞ 𝑛1∕𝑁 = 𝑐 ∈ (0, 1). Let also 𝑿̄ =
∑𝑛1

𝑖=1
𝑿𝑖∕𝑛1 and

𝒀 =
∑𝑛2

𝑘=1
𝒀𝑘∕𝑛2 be two sample mean vectors, and

𝑆=
1

𝑁 − 2

{
𝑛1∑
𝑖=1

(𝑿𝑖−𝑿̄)(𝑿𝑖−𝑿̄)𝑇 +

𝑛2∑
𝑘=1

(𝒀𝑘−𝒀 )(𝒀𝑘−𝒀 )𝑇

}
.

be the pooled sample covariance matrix.

In the two-sample case, we test the hypothesis

𝐻0 ∶ 𝝁1 = 𝝁2 versus 𝐻1 ∶ 𝝁1 ≠ 𝝁2. (7)
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In Web Appendix B.1, we show that the DLRT statistic for

hypothesis (7) is

𝑇2 = 𝑁

𝑝∑
𝑗=1

log

{
1 +

𝑛1𝑛2
𝑁(𝑁 − 2)

(𝑋̄𝑗 − 𝑌𝑗)
2

𝑠2
𝑗,pool

}

= 𝑁

𝑝∑
𝑗=1

log

(
1 +

𝑡2
𝑁𝑗

𝜈2

)
, (8)

where 𝑡𝑁𝑗 =
√

𝑛1𝑛2∕𝑁(𝑋̄𝑗 − 𝑌𝑗)∕𝑠𝑗,pool are the standard 𝑡-

statistics for the two-sample case with 𝜈2 = 𝑁 − 2 degrees of

freedom, and 𝑠2
𝑗,pool

are the pooled sample variances, that is,

the diagonal elements of 𝑆.

For ease of notation, let 𝑉𝑁𝑗 = 𝑁 log(1 + 𝑡2
𝑁𝑗

∕𝜈2) for

𝑗 = 1,… , 𝑝. The following theorem establishes the asymp-

totic null distribution of the DLRT statistic for the two-sample

case under centering and scaling.

Theorem 3. Let {𝑿𝑖}
𝑛1
𝑖=1

and {𝒀𝑘}
𝑛2
𝑘=1

be i.i.d. random vectors
from 𝑁𝑝(𝝁1,Σ) and 𝑁𝑝(𝝁2,Σ), respectively. If the sequence
{𝑉𝑁𝑗} is stationary and satisfies conditions (C1) and (C2),
then under the null hypothesis, we have for any fixed 𝑁 ≥ 4,

𝑇2 − 𝑝𝐺1

𝜏2
√

𝑝


⟶ 𝑁(0, 1) as 𝑝 → ∞

where 𝜏2
2
= 𝐺2 − 𝐺2

1
+ 2

∑∞

𝑘=1 𝛾(𝑘), with 𝐺1 = 𝑁𝐷(𝜈2) and
𝐺2 = 𝑁2{𝐷2(𝜈2) − 2𝐷′(𝜈2)}.

The proof of Theorem 3 is given in Web Appendix B.2. By

imposing conditions (C1) and (C2) on the sequence {𝑉𝑁𝑗},

Theorem 3 also does not require the assumption that each of

the covariance matrices follows a diagonal matrix structure.

Similar to the one-sample case, a consistent estimator for 𝜏2
2

is given as

𝜏2
2
= 2

∑
0<𝑘≤ℎ

𝜆(𝑘∕ℎ)𝛾̂(𝑘) + 𝛾(0),

where 𝜆(𝑥) is the Parzen window, ℎ is the lag-window size,

𝛾(0) = Var(𝑉𝑁𝑗) = 𝐺2 − 𝐺2
1
, and 𝛾̂(𝑘) = 𝑝−1

∑𝑝−𝑘

𝑗=1
(𝑉𝑁𝑗 −

𝑇2)(𝑉𝑁(𝑗+𝑘) − 𝑇2) is the sample autocovariance for {𝑉𝑁𝑗, 𝑗 =

1, 2,… , 𝑝} and 𝑇2 = 𝑇2∕𝑝.

Corollary 2. Let {𝑿𝑖}
𝑛1
𝑖=1

and {𝒀𝑘}
𝑛2
𝑘=1

be i.i.d. random vec-
tors from 𝑁𝑝(𝝁1,Σ) and 𝑁𝑝(𝝁2,Σ), respectively, and assume
thatΣ is a diagonal matrix. Under the null hypothesis, we have
the following asymptotic results:

(𝑎) For any fixed 𝑁 ≥ 4, (𝑇1 − 𝑝𝐺1)∕

√
𝑝(𝐺2 − 𝐺2

1
)


⟶

𝑁(0, 1) as 𝑝 → ∞.

(𝑏) If 𝑝 increases at such a rate that 𝑝 = 𝑜(𝑁2𝑘), then for the
given positive integer 𝑘 < 𝜈2∕2,

(𝑇2 − 𝑝𝜂𝑘)∕
√
2𝑝


⟶ 𝑁(0, 1) as (𝑁, 𝑝) → ∞,

where 𝜂𝑘 = 𝑁{𝑏1 − 𝑏2∕2 +⋯+ (−1)𝑘+1𝑏𝑘∕𝑘} and 𝑏𝑘 =∏𝑘
𝑖=1{(2𝑖 − 1)∕(𝜈2 − 2𝑖)}.

The proof of Corollary 2 is given in Web Appendix B.3.

This corollary defines asymptotic normality of the DLRT

statistic for two scenarios under the diagonal covariance

matrix assumption: the result from (a) establishes the asymp-

totic null distribution when 𝑁 is fixed but 𝑝 is large, and

the result from (b) establishes the asymptotic null distribution

when 𝑁 and 𝑝 are both large.

When 𝝁1 ≠ 𝝁2, we consider the local alternative

𝝁1 − 𝝁2 =

√
𝑁

𝑛1𝑛2
𝜹2, (9)

where 𝜹2 = (𝛿21,… , 𝛿2𝑝)
𝑇 . We assume that 𝚫2 =

(Δ21,… ,Δ2𝑝)
𝑇 = (𝛿21∕𝜎11,… , 𝛿2𝑝∕𝜎𝑝𝑝)

𝑇 , with all of

the components uniformly bounded such that

Δ2
2𝑗

⩽ 𝑀1, for 𝑗 = 1,… , 𝑝, (10)

where 𝜎2
𝑗𝑗

are the diagonal elements ofΣ, and 𝑀1 is a constant

independent of 𝑁 and 𝑝. The following theorem establishes

the asymptotic power of our proposed DLRT statistic for the

two-sample test.

Theorem 4. Let {𝑿𝑖}
𝑛1
𝑖=1

and {𝒀𝑘}
𝑛2
𝑘=1

be i.i.d. random vec-
tors from 𝑁𝑝(𝝁1,Σ) and 𝑁𝑝(𝝁2,Σ), respectively. Assume that
𝑝 increases at such a rate that 𝑝 = 𝑜(𝑁2). If the sequence
{𝑉𝑁𝑗, 𝑗 = 1, 2,…} is stationary and satisfies conditions (C1)
and (C2), then under the local alternative (9) and condition
(10), the asymptotic power of the level 𝛼 test is

𝛽(𝑇2) = 1 − Φ

⎛⎜⎜⎜⎝𝑧𝛼 −
𝚫𝑇
2
𝚫2∕

√
𝑝√

𝜏2
2

⎞⎟⎟⎟⎠ as (𝑁, 𝑝) → ∞,

and hence, 𝛽(𝑇2) → 1 if
√

𝑝 = 𝑜
(∑𝑝

𝑗=1
𝛿2
2𝑗
∕𝜎2

𝑗𝑗

)
, and

𝛽(𝑇2) → 𝛼 if
∑𝑝

𝑗=1
𝛿2
2𝑗
∕𝜎2

𝑗𝑗
= 𝑜(

√
𝑝).

4 MONTE CARLO SIMULATION
STUDIES

In this section, we carry out simulations to evaluate the

performance of our DLRT method. For ease of presentation,

we consider the proposed DLRT test for the two-sample case

only. We compare DLRT with five existing tests from the
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FIGURE 1 Comparison with the standard normal distribution under the null hypothesis for the DLRT, SD, CQ, GCTmd, GCTlg, and RHT tests

with 𝑛1 = 𝑛2 = 3 and 𝑝 = 500. The histograms are based on 5000 simulations. This figure appears in color in the electronic version of this article.

aforementioned three categories: one unscaled Hotelling’s

test including the CQ test from Chen and Qin (2010), one

regularized Hotelling’s test including the RHT test from Chen

et al. (2011), and two diagonal Hotelling’s tests including the

SD test from Srivastava and Du (2008), and the GCT test from

Gregory et al. (2015). Gregory et al. (2015) considered two

different versions of the GCT test with centering corrections

that allowed the dimension to grow at either a moderate or

large order of the sample size, which are denoted as GCTmd

and GCTlg, respectively. The lag-window size throughout the

simulations is ℎ = 5.

4.1 Normal data
In the first simulation, we generate 𝑿1,… ,𝑿𝑛1

from

𝑁𝑝(𝝁1,Σ), and 𝒀1,… , 𝒀𝑛2 from 𝑁𝑝(𝝁2,Σ). For simplicity,

let 𝝁1 = 𝟎. Under the alternative hypothesis, we assume that

the first 𝑝0 elements in 𝝁2 are nonzero, where 𝑝0 = 𝛽𝑝 with

𝛽 ∈ [0, 1] being the tuning parameter that controls the sig-

nal sparsity. When 𝛽 = 0, the null hypothesis holds. The

common covariance matrix is Σ = 𝐷𝑇𝑅𝐷, where 𝑅 is the

correlation matrix and 𝐷 is a diagonal matrix such that 𝐷 =

diag(𝜎11, 𝜎22,… , 𝜎𝑝𝑝). To account for the heterogeneity of

variances, 𝜎2
11
,… , 𝜎2

𝑝𝑝 are randomly sampled from the scaled

chi-square distribution 𝜒2
5
∕5. For the dependence structure in

the matrix 𝑅, we consider the following three scenarios:

(a) Independent (IND) structure: 𝑅 is the 𝑝 × 𝑝 identity

matrix.

(b) Short range dependence (SRD) structure: 𝑅 = (𝜌|𝑖−𝑗|)𝑝×𝑝
follows the first-order autoregressive structure, in which
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TABLE 1 Type I error rates over 2000 simulations for the DLRT, GCTmd, GCTlg, SD, CQ, RHT tests under three dependence structures.

The significance level is 𝛼 = 0.05. Two different correlation, 𝜌 = 0.3 or 0.6, are considered for the SRD structure

𝒑 = 𝟏𝟎𝟎 𝒑 = 𝟓𝟎𝟎

Cov Method\(𝒏𝟏, 𝒏𝟐) (𝟑, 𝟑) (𝟓, 𝟓) (𝟏𝟓, 𝟏𝟓) (𝟑, 𝟑) (𝟓, 𝟓) (𝟏𝟓, 𝟏𝟓)
IND DLRT 0.060 0.056 0.058 0.055 0.043 0.048

SD 0.403 0.111 0.044 0.342 0.038 0.024

GCTmd 0.608 0.233 0.063 0.983 0.922 0.151

GCTlg 0.101 0.124 0.092 0.047 0.110 0.060

CQ 0.092 0.066 0.056 0.084 0.058 0.051

RHT 0.097 0.068 0.058 0.105 0.070 0.053

SRD (𝜌 = 0.3) DLRT 0.067 0.058 0.054 0.054 0.053 0.061

SD 0.387 0.105 0.038 0.309 0.046 0.023

GCTmd 0.548 0.203 0.071 0.986 0.893 0.143

GCTlg 0.116 0.119 0.094 0.05 0.106 0.070

CQ 0.076 0.054 0.052 0.078 0.059 0.051

RHT 0.099 0.067 0.058 0.098 0.060 0.060

SRD (𝜌 = 0.6) DLRT 0.072 0.076 0.078 0.080 0.072 0.078

SD 0.351 0.082 0.031 0.28 0.041 0.023

GCTmd 0.421 0.152 0.091 0.980 0.749 0.116

GCTlg 0.130 0.164 0.129 0.064 0.122 0.095

CQ 0.079 0.050 0.056 0.080 0.051 0.053

RHT 0.110 0.067 0.060 0.099 0.063 0.048

LRD DLRT 0.061 0.065 0.054 0.052 0.071 0.056

SD 0.383 0.112 0.034 0.332 0.054 0.025

GCTmd 0.594 0.222 0.067 0.983 0.913 0.143

GCTlg 0.104 0.152 0.095 0.047 0.109 0.077

CQ 0.092 0.058 0.052 0.082 0.062 0.057

RHT 0.108 0.058 0.060 0.102 0.063 0.052

the correlation among the observations decays expo-

nentially with distance. We consider 𝜌 = 0.3 or 0.6 to

represent two different levels of correlation.

(c) Long range dependence (LRD) structure: we follow the

same setting as in Gregory et al. (2015) Specifically,

we consider the (𝑖, 𝑗)th element of 𝑅 as 𝑟𝑖𝑗 = [(𝑘 +

1)2𝐻 + (𝑘 − 1)2𝐻 − 2𝑘2𝐻 ]∕2 with 𝑘 = |𝑗 − 𝑖|, and the

self-similarity parameter as 𝐻 = 0.625.

For the power comparison, we set the 𝑗th nonzero

component in 𝝁2 as 𝜇2𝑗 = 𝜃𝜎𝑗𝑗 , 𝑗 = 1,… , 𝑝0, where

𝜃 is the effect size of the corresponding compo-

nent. The other parameters are set as (𝑛1, 𝑛2, 𝜃) × 𝑝 =

{(3, 3, 0.5) or (5, 5, 0.5) or (15, 15, 0.25)} × {100 or 500},

respectively.

Figure 1 shows the simulated null distributions of the

DLRT, SD, GCTmd, GCTlg, CQ, and RHT tests under the

independent structure, when the sample size is small (eg,

𝑛1 = 𝑛2 = 3) and the dimension is large. The histograms are

based on 5000 simulations. For comparison, their limiting dis-

tributions are also plotted. However, the null distributions of

the other three tests, and especially the GCTmd test, are either

skewed or shifted away from the standard normal distribution.

We summarize the type I error rates from the simula-

tions for each of the six tests, with different sample sizes

and dependence structures, in Table 1. When the variables

are uncorrelated or weakly correlated with each other, the

type I error rates of DLRT are closer to the nominal level

(𝛼 = 0.05) than the other five tests under most settings. In

addition, DLRT provides a more stable test statistic and bet-

ter control over the type I error rate when the sample size is

not large; the SD, GCTlg, CQ, and RHT tests have inflated

type I error rates when the sample size is relatively small (eg,

𝑛1 = 𝑛2 = 3). The GCTmd test in particular fails to keep the

type I error rate within the nominal level under each setting,

and performs more poorly when the sample size is small and

the dimension is large. Therefore, we exclude the GCTmd test

from the following power comparison.

Figure 2 presents the simulated power of the DLRT, SD,

GCTlg, CQ, and RHT tests at the significance level 𝛼 = 0.05.

When the dimension is low (eg, 𝑝 = 100), the DLRT, CQ,

and RHT tests are able to control the type I error rates well,

whereas the SD and GCTlg tests suffer from inflated type

I error rates. In particular for the GCTlg test, it exhibits a

relatively low power when the sample size is small. This

coincides with the findings in Figure 1. As the dimension

is large and the sample size is not small, the DLRT, SD,

CQ, and RHT tests control the type I error rate close to

the nominal level, whereas the GCTlg test still fails. DLRT

also provides a higher power in most settings. To conclude,

DLRT performs comparably to the existing tests for normal

data.
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FIGURE 2 Power comparisons among the DLRT, SD, GCTlg, CQ, and RHT tests with (𝑛1 = 𝑛2 = 5, 𝑝 = 100) or (𝑛1 = 𝑛2 = 15, 𝑝 = 500),

respectively. The horizontal dashed red lines represent the significance level of 𝛼 = 0.05. The results are based on 2000 simulations with data from

the normal distribution. This figure appears in color in the electronic version of this article, and color refers to that version.
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FIGURE 3 Power comparisons among the DLRT, SD, GCTlg, CQ, and RHT tests with (𝑛1 = 𝑛2 = 5, 𝑝 = 100) or (𝑛1 = 𝑛2 = 15, 𝑝 = 500),

respectively. The horizontal dashed red lines represent the significance level of 𝛼 = 0.05. The results are based on 2000 simulations with data from a

heavy-tailed distribution. This figure appears in color in the electronic version of this article, and color refers to that version.
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4.2 Heavy-tailed data
To evaluate the robustness of DLRT, we also conduct simula-

tions with heavy-tailed data. Following Gregory et al. (2015),

the data are generated based on a “double” Pareto distribution

with parameters 𝑎 and 𝑏. The algorithm is as follows:

(i) Generate two independent random variables 𝑈 and 𝑉 ,

where 𝑈 is from the Pareto distribution with the cumu-

lative distribution function 𝐹 (𝑥) = 1 − (1 + 𝑥∕𝑏)−𝑎 for

𝑥 ≥ 0, and 𝑉 is a binary random variable with 𝑃 (𝑉 =

1) = 𝑃 (𝑉 = −1) = 0.5. Then 𝑍 = 𝑈𝑉 follows the

double Pareto distribution with parameters 𝑎 and 𝑏.

(ii) Generate random vectors {𝑿
(0)

𝑖
= (𝑥𝑖1,… , 𝑥𝑖𝑝)

𝑇 }
𝑛1
𝑖=1

,

and random vectors {𝒀
(0)

𝑘
= (𝑦𝑘1,… , 𝑦𝑘𝑝)

𝑇 }
𝑛2
𝑘=1

, where

all the components of 𝑿
(0)

𝑖
and 𝒀

(0)

𝑘
are sampled inde-

pendently from the double Pareto distribution with

parameters 𝑎 = 16.5 and 𝑏 = 8.

(iii) Let𝑿𝑖 = 𝝁1 + Σ1∕2𝑿
(0)

𝑖
∕𝑐0 and 𝒀𝑘 = 𝝁2 + Σ1∕2𝒀

(0)

𝑘
∕𝑐0,

where 𝑐2
0
= 512∕899 is the variance of the double Pareto

distribution with 𝑎 = 16.5 and 𝑏 = 8, and Σ = 𝐷𝑇𝑅𝐷

with 𝐷 = diag(𝜎11,… , 𝜎𝑝𝑝). Consequently, 𝑿𝑖 and 𝒀𝑘
have a common correlation matrix 𝑅.

For the matrix𝑅, we also consider three scenarios: (a) the IND

structure, (b) the SRD structure, and (c) the LRD structure.

In each scenario, the generating algorithms for 𝝁1, 𝝁2, and

Σ follow the simulation procedure described in Section 4.1.

The parameters used in the algorithms are (𝑛1, 𝑛2, 𝜃) × 𝑝 =

{(5, 5, 0.5) or (15, 15, 0.25)} × {100 or 500}, respectively.

Figure 3 presents the simulation results for the five tests

with heavy-tailed data at the significance level 𝛼 = 0.05.

When the dimension is large and the sample size is small,

the DLRT, SD, and RHT tests control the type I error rate

well, whereas the GCTlg test exhibits a substantially inflated

type I error rate and a low power for detection. One possible

explanation is that the GCTlg statistic involves the estimation

of high order moments which leads to instability when the

sample size is small. DLRT is again more powerful than the

CQ and RHT tests in most settings. In summary, it is evident

that the DLRT test provides a more robust performance with

heavy-tailed data than the existing five tests, especially when

the dimension is large.

5 BRAIN CANCER DATA
ANALYSIS

In this section, we apply DLRT to a data set from The Cancer

Genome Atlas (TCGA). This data set contains the copy num-

ber measurements from genomic locations of the probes on

chromosomes in 92 long-term survivors and 138 short-term

survivors with a brain cancer called glioblastoma multiforme.

The long-term brain cancer survivors lived for more than

TABLE 2 Empirical power for testing the equality of gene expres-

sions in the TCGA data, when 𝑝 = 100, 200, or 400. The nominal

level is 𝛼 and the sample sizes of the two classes are 𝑛1 = 𝑛2 = 8

DLRT SD GCTlg CQ RHT
𝑝 = 100 0.165 0.121 0.082 0.143 0.189

𝛼 = 0.05 𝑝 = 200 0.158 0.096 0.094 0.116 0.194

𝑝 = 400 0.144 0.081 0.119 0.106 0.136

𝑝 = 100 0.274 0.201 0.165 0.233 0.345

𝛼 = 0.10 𝑝 = 200 0.261 0.157 0.190 0.192 0.354

𝑝 = 400 0.258 0.154 0.212 0.181 0.295

two years after their first diagnosis, and the short-term sur-

vivors lived for less than two years after their first diagnosis.

According to Olshen et al. (2004) and Baladandayuthapani

et al. (2010), the copy number variations between the patient

groups will occur across multiple probes rather than at a single

probe. That is, the signal structure is dense-but-small rather

than sparse-but-strong. To identify the particular regions in

the genome where the genes were differentially expressed,

we apply the following tests: the DLRT, SD, GCTlg, CQ,

and RHT tests. Gregory et al. (2015) separated the whole

chromosome into 26 segments of varying lengths. We focus

our analysis on one segment of the 𝑞 arm of chromosome

1, which contains measurements of probes at 400 locations.

The copy number data at 400 locations are summarized

in “chr1qseg.rda” which is available from the R package

“highD2pop.”

To compare the performance of the tests, we first perform

the two-sample 𝑡-tests to screen top 𝑝 significant genes, and

then calculate the empirical power with 𝑝 = 100, 200, or 400,

respectively. To determine the empirical critical values corre-

sponding to a given nominal level 𝛼, we bootstrap two distinct

classes from the short-term survival group to compute the test

statistics. Since both classes are partitioned from the short-

term survival group, the null hypothesis can be regarded as

the truth. Therefore, we repeat the procedure 10 000 times for

each test method, and select the (10 000𝛼)th largest value of

the test statistics as the empirical critical values. To determine

the empirical power, we bootstrap one class from the short-

term survival group and another class from the long-term

survival group. For both classes, we consider 𝑛1 = 𝑛2 = 8

for computing the empirical critical values and power.

Table 2 shows the empirical power of the DLRT, SD,

GCTlg, CQ, and RHT tests. We note that the DLRT test per-

forms nearly as well as the RHT test, and it has a higher empir-

ical power than the other three tests under all the settings.

6 CONCLUSION

In the classical low-dimensional setting, Hotelling’s 𝑇 2 test

is an important and useful tool for testing the equality of

one or two mean vectors from multivariate normal distribu-

tions. However, this classic test may not be applicable when
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the dimension is larger than the sample size, as the sample

covariance matrix is no longer invertible. This motivates the

development of new methods to address the testing prob-

lems for high-dimensional data with a small sample size.

According to how the covariance matrices are estimated, most

available methods can be classified into three categories: the

unscaled Hotelling’s tests, the regularized Hotelling’s tests,

and the diagonal Hotelling’s tests.

In this paper, we proposed a new test framework based on

the likelihood ratio test for both one- and two-sample cases.

The proposed test statistics are derived under the assumption

that the covariance matrices follow a diagonal matrix struc-

ture. Our tests use the log-transformed squared 𝑡-statistics and

provide more stable test statistics than the standard 𝑡-statistics

when the sample size is small. Through simulation studies,

we showed that DLRT is also more robust than the existing

test methods when the data are heavy-tailed or weakly cor-

related. In other words, when the dimension is large and the

sample size is small, DLRT is able to keep the type I error

rate within the nominal level and, at the same time, maintains

a high power for detection.

The proposed new test assumes a natural ordering of the

components in the 𝑝-dimensional random vector, for exam-

ple, the correlation among the components are related to

their positions, and hence we can take into account the addi-

tional structure information to avoid an estimation of the

full covariance matrix. When the ordering of the compo-

nents is not available, we propose to reorder the components

from the sample data using some well known ordering meth-

ods before applying our proposed tests. For instance, with

the best permutation algorithm in Rajaratnam and Salzman

(2013), the strongly correlated elements can be reordered

close to each other. For other ordering methods of ran-

dom variables, one may refer to, for example, Gilbert et

al. (1992), Wagaman and Levina (2009), and the references

therein.

When the sample size is relatively small and the correla-

tion is very high, our proposed tests will have slightly inflated

type I error rates, especially when the dimension is also large.

This is mainly because the test statistics are derived under

the assumption that the covariance matrices follow a diago-

nal matrix structure. When the diagonal matrix assumption

is violated, the asymptotic null distributions may not follow

the standard normal distribution, or the asymptotic properties

may require more restrictive assumptions including a larger

sample size. To overcome these limitations, future research is

warranted to improve our current version of DLRT or to derive

more accurate asymptotic distributions when the underlying

assumptions are violated.

We also note that our current paper has focused on testing

high-dimensional mean vectors under the parametric setting.

More recently, some nonparametric tests have also been devel-

oped in the literature for the same testing problems; see, for

example, Wang et al. (2015), Ghosh and Biswas (2016), and

Chakraborty and Chaudhuri (2017).
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