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ABSTRACT

Motivation: Multiple comparison adjustment is a significant and
challenging statistical issue in large-scale biological studies. In
previous studies, dependence among genes is largely ignored.
However, such dependence may be strong for some genomic-scale
studies such as genetical genomics [also called expression
quantitative trait loci (eQTL) mapping] in which thousands of genes
are treated as quantitative traits and mapped to different genetical
markers. Besides the dependence among markers, the dependence
among the expression levels of genes can also have a significant
impact on data analysis and interpretation.
Results: In this article, we propose to consider both the mean as well
as the variance of false discovery number for multiple comparison
adjustment to handle dependence among hypotheses. This is
achieved by developing a variance estimator for false discovery
number, and using the upper bound of false discovery proportion
(uFDP) for false discovery control. More importantly, we introduce a
weighted version of uFDP (wuFDP) control to improve the statistical
power of eQTL identification. In addition, the wuFDP approach can
better control false positives than false discovery rate (FDR) and
uFDP approaches when markers are in linkage disequilibrium. The
relative performance of uFDP control and wuFDP control is illustrated
through simulation studies and real data analysis.
Contacts: liang.chen@usc.edu; hongyu.zhao@yale.edu
Supplementary information: Supplementary figures, tables and
appendices are available at Bioinformatics online.

1 INTRODUCTION
Advanced chip technologies such as microarrays facilitate biological
discoveries by studying thousands of genes simultaneously.
However, false positive control presents a challenging statistical
problem because a large number of hypotheses are tested in such
studies. Family-wise error rate (FWER) control is one approach for
multiple comparison correction and is defined as the probability of
at least one false positive occurring. For example, when FWER is
controlled at 0.01, the probability of identifying one or more false
positives is less than or equal to 0.01. However, it is generally agreed
that FWER control is conservative in genomic studies when there
may be many signals and the primary goal is discovery. We may relax
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our criteria for more discoveries by tolerating more false positives.
Consequently, alternative procedures, e.g. false discovery rate [FDR,
which is the expectation of false discovery proportion (FDP)]
controls (Benjamini and Hochberg, 1995; Storey and Tibshirani,
2003), are widely used for multiple comparison correction in high-
dimensional genomic studies. However, the dependence among
hypotheses is largely ignored in the existing methods based on FDR
control, despite the facts that correlations among hypotheses may
be high for genomics studies.

In this article, we focus on the analysis and interpretation of
data arising from genetical genomics [expression quantitative trait
loci (eQTL) mapping] studies, whose goal is to search for genetic
loci associated with gene expression variations in a study population,
e.g. samples from experimental crosses or an outbred population.
Genetical genomics allows us to systematically study transcriptional
regulation through sequence variations across study subjects. In
this context, sequence variations can be considered as natural
perturbations that can affect gene expressions. This approach has
been successfully applied to yeast, fly, maize, mice, rat, human
and other organisms (Brem et al., 2002; Bystrykh et al., 2005;
Chesler et al., 2005; Hubner et al., 2005; Morley et al., 2004;
Schadt et al., 2003; Spielman et al., 2007; Stranger et al., 2005).
In these studies, gene expressions can vary significantly across
individuals and genes often exhibit a complicated correlation
structure among them. For example, genes sharing biological
functions or in the same chromosomal domains (Cohen et al.,
2000) may be correlated. In addition, markers in close physical
proximity may be in linkage disequilibrium and they are highly
correlated. Therefore, there is a need to develop statistical methods to
address the issue of dependence among hypotheses in such studies.
Recently, several papers have addressed the multiple comparison
problem for correlated hypothesis tests. Lehmann and Romano
(2005) proposed to control the probability of k or more false
rejections as a generalized family-wise error rate control without
making any assumptions about the dependence structure among
different hypotheses. Efron (2007) addressed this problem from a
different perspective by proposing to use the expectation of false
discovery number conditioning on a correlation effect parameter.

In this article, we propose to control the upper bound of FDP
(uFDP) to handle multiple comparisons for dependent hypotheses.
It is similar to the generalized family-wise error rate control because
we control the probability of false rejection proportion larger than
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a given threshold. More importantly, we introduce a weighted
version to control the uFDP (wuFDP) to improve the statistical
power of eQTL identification. These weights are related to the
correlation structure of the hypotheses. Thus, in contrast to previous
studies, we not only consider the dependence among hypotheses,
but also utilize it to improve statistical power. In addition, the
wuFDP approach can better control false positives than FDR and
uFDP approaches when markers are in linkage disequilibrium. We,
therefore, recommend using wuFDP control as a practical approach
to identify significant marker–gene pairs in eQTL studies.

In the following sections, we will illustrate the effect of
dependence on false discovery control using an eQTL dataset.
Then, we will introduce uFDP and wuFDP controls followed by
simulations and real data analysis. Finally, we conclude this article
in Section 4.

2 METHODS

2.1 Impact of dependence among hypotheses
As discussed earlier, the objective of an eQTL study is to identify
chromosomal regions affecting the expression levels of the genes measured
on microarrays. For each individual, both gene expression levels and marker
genotypes are collected and their associations are investigated. If each
gene is treated as a quantitative trait, traditional QTL mapping methods
can be applied to identify markers associated with each gene. Much
work has been done in the literature to consider the dependence among
markers in QTL mapping when only one trait is studied. However, the
expression levels of many genes are highly dependent, and appropriate
statistical methods are needed to take into account such dependence.
The complexity of gene expression pattern in eQTL mapping makes
the dependence among hypotheses complicated. Supplementary Figure 1
illustrates the non-trivial dependence among genes in an eQTL expression
dataset. The dataset contains 1000 genes for 60 individuals. The details of
the dataset are described subsequently in Section 3.3. This figure shows the
histograms of pairwise correlations among genes. It clearly indicates a strong
dependence pattern among genes. When genes are highly correlated with
each other, if one of them is falsely declared significant, other correlated
genes are also likely to be falsely declared significant. In the presence
of correlation among hypotheses, the variance of false positive number
will increase and correspondingly FDP may deviate much more from the
mean, i.e. FDR, than when hypotheses are independent of each other. This
phenomenon was also explored by Owen (2005) for the identification of
differentially expressed genes under two conditions.

To illustrate the magnitude of the variation of false positive number in the
presence of correlated hypotheses in eQTL studies, Supplementary Figure 2
shows the histogram of false positive number from permuted datasets,
where all the null hypotheses are true. The permuted data were generated
from the original data as follows. In the original dataset, the observations
for each individual consist of two components, gene expression data and
genotype data. For each permuted dataset, the association between these
two sets of observations was randomly paired across all the individuals,
whereas the gene expression data vector and the genotype vector were kept
intact individually. That is, we permuted the whole transcriptome together
instead of permuting every gene separately, so the dependence among
genes and the dependence among markers were kept but any association
between genes and markers was destroyed. A linear regression model was
used to test the association between gene expression and marker genotype.
For permuted datasets, all the discoveries are false positives. For 1000
simulations, using the P-value threshold of 1.0×10−5, although the average
false positive number 258.1 was close to 202.8 (the expected false positive
number for 1000 gene by 20 281 marker comparisons under the independence
situation), the false positive number was very high for some permuted

datasets and the maximum false positive number was 482. As can be seen
from Supplementary Figure 2, the distribution is right-skewed and the false
positive number tends to deviate much from the mean for some permutations.
The SD of the false positive numbers across 1000 permutations was about
31.6, much larger than 14.2, the expected SD when all the hypotheses were
independent.

As we mentioned that much work has been done to consider marker
dependence in QTL mapping. Most of them focus on the FWER control
to avoid any single false positive across the whole genome scan (Churchill
and Doerge, 1994; Doerge and Churchill, 1996). It has been reported that the
applicability of traditional FDR approach for the linkage analysis of a single
trait is dubious (Chen and Storey, 2006). The dependence among markers
makes the interpretation of FDR problematic. By genotyping more markers
around the causal marker, we can identify more true positives. These true
positives cannot provide us additional information because they represent the
same signal from the causal marker. However, the FDR will be decreased by
adding these markers. Correspondingly, more false positives will be included
to achieve the specified FDR level. To overcome the above limitations of
FDR control, we propose a wuFDP control. First, we define uFDP control.

2.2 uFDP and wuFDP control
As shown in Section 2.1, because FDR control only considers the expected
false discovery proportion, the FDP for each realization may differ from the
desired FDR level, an issue that may become much more severe when the
hypotheses are dependent on each other. To remedy this problem, we propose
to control FDP at a certain level so that we are confident about our results.
FDP is formally defined as (Lehmann and Romano, 2005)

FDP=
{

V/R R>0
0 R=0

,

where V is the false positive number and R is the total discovery number.
V can be written as

∑h
i=1 vi , where h is the total number of hypotheses and

vi is the indicator function of whether hypothesis i is falsely rejected. R can
be written as

∑h
i=1 ri and ri is the indicator function of whether hypothesis

i is rejected.
If R > 0, we define the uFDP as

uFDP= E(V )+z1−α

√
Var(V )

R
,

where z1−α is the 100(1−α)-th percentile of the standard normal distribution.
According to the central limit theorem, if v1,...,vh are independent of each
other, when h→∞, (V −E(V ))/

√
Var(V ) converges to the standard normal

distribution. For a given dataset, R is fixed, if we approximate the distribution
of V as a normal distribution and if both the mean and variance of V can be
calculated,

Pr(
V

R
≥uFDP)=α.

Therefore, for a given α, the probability that FDP is larger than uFDP can be
controlled at α. It will have a better statistical power than other procedures
which control Pr(V/R≥uFDP)≤α with the equal sign only achieved under
certain situations. However, if v1,...,vh are dependent on each other, the
approximation of V as a normal distribution may be inappropriate. Therefore,
we consider a weighting scheme to make the dependence among hypotheses
smaller. Specifically, if a gene (or marker) is highly correlated with other
genes (or markers) , it will be assigned a smaller weight. If

∑h
i=1 wiri >0,

the weighted version of the uFDP is defined as

wuFDP= E(
∑h

i=1 wivi)+z1−α

√
Var(

∑h
i=1 wivi)∑h

i=1 wiri

.

If we approximate the distribution of
∑h

i=1 wivi as a normal distribution, we
can find wuFDP such that

Pr(

∑h
i=1 wivi∑h
i=1 wiri

≥wuFDP)=α.
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If we treat V and
∑h

i=1 wivi as continuous random variables with a
unimodal probability density function, according to Vysochanskiï−Petunin
inequality (Vysochanskiï and Petunin, 1980), for z1−α >

√
8/3, we have,

Pr

(
V

R
≥uFDP

)
≤ 4

9z2
1−α

,

Pr

(∑h
i=1 wivi∑h
i=1 wiri

≥wuFDP

)
≤ 4

9z2
1−α

.

If z1−α is chosen to be 2.33, the FDP or weighted FDP (
∑h

i=1 wivi/
∑h

i=1 wiri)
are controlled at 0.01 level according to the normal distribution
approximation and 0.08 level according to Vysochanskiï−Petunin inequality.
If R or

∑h
i=1 wiri is equal to 0, FDP or weighted FDP is defined as 0, which

can also be controlled at α level.
In practice, the threshold for rejecting hypotheses is chosen to let uFDP or

wuFDP equal to our predefined level. uFDP and wuFDP can also be written
as

uFDP = π0E(
∑h

i=1 I(|T0
i |≥ t))+z1−απ0

√
Var(

∑h
i=1 I(|T0

i |≥ t))∑h
i=1 I(|Ti|≥ t)

,

wuFDP = π0E(
∑h

i=1 wiI(|T0
i |≥ t))+z1−απ0

√
Var(

∑h
i=1 wiI(|T0

i |≥ t))∑h
i=1 wiI(|Ti|≥ t)

,

where π0 is the proportion of true null hypotheses among all the hypotheses.
T0

i is the test statistic random variable under the null and Ti is the observed
test statistic. I(·) is the indicator function and t is the threshold. In this
article, we estimate π0 as 1, which means only a very small proportion of
true marker–gene associations among all of the possible marker–gene pairs.
This is a reasonable assumption in genetical genomics studies. We note that
a better estimator of π0 will improve the results in other settings.

2.3 Variance estimation of V
In this section, we discuss how to estimate the variance of V in the context
of eQTL analysis. To detect eQTL, we fit a linear regression model relating
the expression of gene g to the genotype of marker m (coded as 0, 1 or 2 for
homozygous rare, heterozygous and homozygous common alleles):

ygk =βgmxmk +εgk, k =1,...,n,

ygk is the expression level for gene g and individual k, xmk is the number
of common alleles for marker m and individual k, the εgk (k =1,...,n) are
independent normal random variables with mean 0 and variance σ 2

g . Y ’s

and X’s are standardized so that
∑n

k=1 ygk =0,
∑n

k=1 y2
gk =1,

∑n
k=1 xmk =0

and
∑n

k=1 x2
mk =1. Similarly, we can fit a regression between gene g′ and

marker m′. Although εgk are independent for different individuals and εg′k
are independent for different individuals, εgk and εg′k may be related to each
other for the same individual k. That is, we have the following covariance
structure: Cov(εgk,εg′k′ )=�gg′ for k =k′ and Cov(εgk,εg′k′ )=0 for k �=k′.
Under the above setup, the least squares estimates for βgm and βg′m′ are

β̂gm =
n∑

k=1

ygkxmk ∼Norm(βgm,σ 2
g ),

β̂g′m′ =
n∑

k=1

yg′kxm′k ∼Norm(βg′m′ ,σ 2
g′ ),

where σ 2
g and σ 2

g′ can be estimated by the residual sum of squares divided

by (n−2), and their estimates are denoted as σ̂ 2
g and σ̂ 2

g′ .
Under the null hypotheses that βgm =0 and βg′m′ =0,

β̂gm

σ̂g
∼ tn−2,

β̂g′m′

σ̂g′
∼ tn−2.

We define the test statistics as follows:

Tgm =�−1

(
Ptn−2

(
β̂gm

σ̂g

))
,

Tg′m′ =�−1

(
Ptn−2

(
β̂g′m′

σ̂g′

))
,

where Ptn−2 is the cdf of t distribution with n−2 degrees of freedom, �−1 is
the inverse function of the cdf of standard normal. Under the null hypotheses,
(T0

gm,T0
g′m′ )T can be approximated by a bivariate normal distribution with

mean (0,0)T and variance–covariance matrix

(
1,ρgg′mm′
ρgg′mm′ ,1

)
. ρgg′mm′ can be

approximated as the correlation between β̂gm/σ̂g and β̂g′m′/σ̂g′ . With a large
sample size, the latter one can be further approximated as the correlation
between β̂gm and β̂g′m′ , that is

�gg′
σgσg′

∑n
k=1 xmkxm′k . The correlation consists

of two parts: �gg′/σgσg′ is the correlation between expression-level residuals

which can be estimated as the Pearson’s correlation between ε̂g =Yg −β̂gmXm

and ε̂g′ =Yg′ −β̂g′m′ Xm′ ;
∑n

k=1 xmkxm′k can be treated as the correlation
between markers. Denote the estimator for ρgg′mm′ as ρ̂gg′mm′ .

The covariance between vgm and vg′m′ can be estimated as:

Cov(vgm,vg′m′ )=Pr(|T0
gm|≥ t,|T0

g′m′ |≥ t|ρ̂gg′mm′ )−Pr(|T0
gm|≥ t)2.

Therefore, for a threshold t and when π0 is set as 1, we can calculate the
FDR, uFDP and wuFDP as:

FDR = E(
∑h

i=1 I(|T0
i |≥ t))∑h

i=1 I(|Ti|≥ t)
,

uFDP = E(
∑h

i=1 I(|T0
i |≥ t))+z1−α

√
Var(

∑h
i=1 I(|T0

i |≥ t))∑h
i=1 I(|Ti|≥ t)

,

wuFDP = E(
∑h

i=1 wiI(|T0
i |≥ t))+z1−α

√
Var(

∑h
i=1 wiI(|T0

i |≥ t))∑h
i=1 wiI(|Ti|≥ t)

.

For each threshold t, we can count the total number of rejections R
and calculate FDR, uFDP and wuFDP. We stop at the largest R whose
corresponding FDR, uFDP and wuFDP are less than our predefined levels
(e.g. 0.1). This FDR is similar to Storey’s FDR (Storey and Tibshirani, 2003)
except that we estimate π0 as 1.

2.4 Weighting scheme
In this section, we discuss wuFDP control as a way to increase statistical
power. The rationale of our approach is based on minimizing the variance
of weighted false discoveries. Let 	= (τij)i, j=1,...,h denote the estimated
variance–covariance matrix of v1, ... ,vh. For the threshold t, we can get
a corresponding P-value threshold p, and τij =p−p2 for i= j and τij =
pij −p2 for i �= j where pij =Pr(|T0

gm|≥ t,|T0
g′m′ |≥ t|ρ̂gg′mm′ ). Let hypothesis

i correspond to gene g and marker m and hypothesis j correspond to gene
g′ and marker m′. Given

∑h
i=1 wi =h, the optimal weights minimizing

Var(
∑h

i=1 wivi) are given as

wopt = h	−11
1T 	−11

, (1)

where 1= (1,...,1)T with size h. Note that the optimal weights in (1) are not
guaranteed to be non-negative, which makes the interpretation difficult. The
constraint that wi ≥0 in variance minimization is commonly used in portfolio
optimization. But the computation is prohibitive for our studies where there
are thousands of hypotheses and the weights need to be updated many times
according to different threshold values. In this article, we propose to use the
following weight for hypothesis i:

wi = h/si∑h
i=1 1/si

, i=1,...,h, (2)

where si =∑h
j=1τij . In Appendix 1 in Supplementary Material, we proved

that the weights in (2) are all positive under the setting that the tests are
two-sided.
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If the hypotheses are independent of each other (i.e. 	 is diagonal), the
optimal weights defined in (1) are

wopt =
(

h/τ1∑h
i=1 1/τi

, ... ,
h/τh∑h
i=1 1/τi

)
,

which are equal to our proposed weights in (2).
More generally, the optimality of our proposed weights holds when

the variance–covariance matrix 	 is a block diagonal matrix with
compound symmetric matrix in each block. The proof is in Appendix 2,
in Supplementary Material.

Though the proposed weights is not optimal for general 	, simulations
(data not shown) indicate that the weighted variance is smaller than the
original one in most situations. Appendix 3 in Supplementary Material
provides some theoretical justifications under certain conditions. Specifically,
if τij ≤τkl implies that fij(τij) ≥ fkl(τkl), where fij(τij)=1/sisj , we have

Var

(
h∑

i=1

wivi

)
≤Var

(
h∑

i=1

vi

)
.

Because τ11 = ··· =τhh in our study, we have

h∑
i=1

Var(wivi)=τ11

h∑
i=1

w2
i ≥ τ11

h
(

h∑
i=1

wi)
2 =

h∑
i=1

Var(vi).

The sum of diagonal elements of the weighted variance is always larger
than the original one. This implies that the reduction of variance using the
proposed weights (or the optimal weights) are obtained in the off-diagonal
elements. v1,...,vh are more likely to be uncorrelated.

3 RESULTS

3.1 Simulations for gene dependence
We focus on the dependence among genes first. We consider a study
consisting of 100 individuals, with each one typed at one marker
and measured expression levels for 1000 genes. As for genotype
data, among these individuals, 9 have genotype aa (coded as 0), 42
have genotype Aa (coded as 1) and 49 have genotype AA (coded
as 2). Thus the major allele frequency is 0.7 and the minor allele
frequency is 0.3.

As for the expression levels of the 1000 genes, we assume that
50 genes have different expression levels across different genotype
groups. Four scenarios are considered.

(1) All of the non-differentially expressed genes are independent.

(2) Fifty non-differentially expressed genes are correlated with
each other (pairwise correlation is 0.6, 0.7, 0.8 or 0.9).

(3) Hundred non-differentially expressed genes are correlated
with each other (pairwise correlation is 0.6, 0.7, 0.8 or 0.9).

(4) Two hundred non-differentially expressed genes are
correlated with each other (pairwise correlation is 0.6, 0.7,
0.8 or 0.9).

For all of the scenarios, we assume that the differentially expressed
genes and the non-differentially expressed genes are independent.
For each individual, expression data was simulated using a
multivariate normal distribution with mean 0 and corresponding
covariance matrix defined by the above correlation structures. For
the 50 differentially expressed genes, differential signal β was varied
from 0.3, 0.4, 0.5, ..., to 0.9. The simulations were repeated 1000
times. Each gene expression and each marker genotype data were
standardized to have sample mean 0 and sample variance 1/(n−1).

Table 1. The frequency of FDP or weighted FDP larger than 0.1 among 1000
simulations for FDR, uFDP and wuFDP controls

N Corr FDR:
Pr(V/R≥0.1)

uFDP:
Pr(V/R≥0.1)

wuFDP:
Pr
(∑

wivi∑
wiri

≥ 0.1
) wuFDP:

Pr(V/R≥0.1)

0 0.44 0.05 0.04 0.04

50 0.6 0.44 0.05 0.04 0.05
0.7 0.42 0.05 0.05 0.06
0.8 0.44 0.05 0.05 0.06
0.9 0.42 0.04 0.05 0.06

100 0.6 0.41 0.03 0.04 0.05
0.7 0.37 0.04 0.05 0.06
0.8 0.40 0.02 0.04 0.05
0.9 0.37 0.02 0.04 0.05

200 0.6 0.35 0.02 0.04 0.05
0.7 0.34 0.02 0.04 0.06
0.8 0.32 0.01 0.04 0.05
0.9 0.29 0.01 0.04 0.04

The differential signal β = 0.5. The threshold for FDR, uFDP and wuFDP is 0.1. z1−α

is 1.65 to control Pr(V/R≥0.1) and Pr(
∑

wivi/
∑

wiri ≥0.1) ≤0.05. The number of
correlated non-differentially expressed genes varies from 0 to 200. The correlation
among these genes varies from 0.6 to 0.9. For wuFDP control, Pr(V/R≥0.1) is also
listed. Note that if R or

∑
wiri is equal to 0, V/R or

∑
wivi/

∑
wiri is treated as 0.

Table 1 summarizes the frequency of FDP or weighted FDP larger
than 0.1 among those 1000 simulations for FDR, uFDP and wuFDP
controls. The differential signal β is 0.5 and FDR, uFDP and
wuFDP cutoff values are 0.1. z1−α = 1.65 so that Pr(V/R≥0.1) and
Pr(

∑
wivi/

∑
wiri ≥0.1) can be controlled at 0.05 level according

to the normal distribution approximation. For wuFDP control, all of
the estimated probabilities of weighted FDP larger than 0.1 are about
0.04∼0.05 which are close to our significant level 0.05. Even for the
FDP instead of the weighted one, wuFDP still performs well with
Pr(FDP≥0.1)≤0.06. For uFDP control, the probabilities of FDP
larger than 0.1 are much less than 0.05 when the dependence is high.
It suggests that uFDP control may be too conservative in the presence
of dependence. On the contrary, for FDR control, there is a chance
of 29%∼44% to have FDP larger than 0.1. This table indicates that
wuFDP and uFDP control FDP and weighted FDP almost at the
predefined significant level. However, FDP may be much larger than
the controlled average level for regular FDR control. Figure 1 shows
the boxplots of FDP or weighted FDP for FDR, uFDP and wuFDP
controls. If the dependence among hypotheses is strong, FDP is more
likely to deviate from the mean for FDR control. However, uFDP
and wuFDP can control FDP not to deviate much from the mean.

Statistical power of uFDP and wuFDP is compared using these
simulation results. Power is defined by the average of ratios
between truly declared positives and total positives for these 1000
simulations. In Figure 2, power is plotted for each differential
signal (0.3–0.9). The triangle symbol line is for wuFDP control and
the cross symbol line is for uFDP control. When the correlation
among non-differentially expressed genes increases or the number
of correlated non-differentially expressed genes increases, wuFDP
control has a better power than uFDP control. If all of the
non-differentially expressed genes are independent of each other,
Supplementary Figure 3 shows that wuFDP control performs almost
the same as uFDP control.
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Fig. 1. Boxplots of FDP or weighted FDP among 1000 simulations for FDR,
uFDP and wuFDP controls. The differential signal β = 0.5. The threshold for
FDR, uFDP and wuFDP is 0.1. z1−α is 1.65. The number of correlated non-
differentially expressed genes (nc) varies from 0 to 200. The correlation
among these genes (c) varies from 0.6 to 0.9.
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Fig. 2. Statistical power for different differential signal (0.3–0.9). The
number of correlated non-differentially expressed genes varies from 50 to
200. The correlation among these genes varies from 0.6 to 0.9. The threshold
for uFDP and wuFDP is 0.1. z1−α is 1.65. Triangle symbol line is for wuFDP
control and cross symbol line is for uFDP control.

Table 2 summarizes the average true positives and false positives
when the signal is 0.5. Here, for wuFDP control, if one hypothesis

Table 2. The average true positives (TP) and false positives (FP) among
1000 simulations for FDR, uFDP and wuFDP controls

N Corr FDR:
TP

uFDP:
TP

wuFDP:
TP

FDR:
FP

uFDP:
FP

wuFDP:
FP

0 29.4 17.9 17.9 3.2 0.5 0.5

50 0.6 29.3 17.5 18.2 3.2 0.4 0.5
0.7 29.3 17.0 18.2 3.3 0.5 0.5
0.8 29.6 16.5 18.4 3.3 0.4 0.5
0.9 29.4 15.3 18.3 3.2 0.4 0.6

100 0.6 29.6 16.3 18.9 3.3 0.3 0.5
0.7 29.4 15.1 19.1 3.2 0.3 0.6
0.8 29.6 13.1 19.0 3.2 0.2 0.5
0.9 29.7 10.4 19.2 3.6 0.2 0.6

200 0.6 29.2 12.8 19.9 3.5 0.2 0.6
0.7 29.3 10.5 20.0 3.4 0.2 0.7
0.8 29.3 7.3 20.1 4.0 0.1 0.6
0.9 29.3 4.2 19.9 3.9 0.0 0.6

The differential signal β = 0.5. The threshold for FDR, uFDP and wuFDP is 0.1. z1−α

is 1.65. The number of correlated non-differentially expressed genes varies from 0 to
200. The correlation among these genes varies from 0.6 to 0.9. For wuFDP control, if
one hypothesis is rejected, we count it as 1 when we calculate the TP or the FP.

is correctly rejected or falsely rejected, we count it as one without
using its weight. wuFDP control performs well when some non-
differentially expressed genes are correlated with each other. The
performance of wuFDP is almost the same as that of uFDP, when all
of the non-differentially expressed genes are independent of each
other. uFDP controls false positives well for the dependent cases,
but it has lower statistical power.

Average sensitivity is defined as the average of ratios between
truly declared positives and total positives (i.e. 50). Average
specificity is defined as the average of ratios between truly declared
negatives and total negatives (i.e. 950). ROC curves are plotted
according to the average sensitivity and 1−average specificity for
wuFDP, uFDP and FDR controls. The ROC curves shown in Figure 3
also suggest that wuFDP control performs better than uFDP control
under the dependence situation. Because the ROC curves correspond
to the average sensitivity and the average specificity, FDR control
also performs well. However, as we discussed before, FDP for a
specific experiment may be much larger than the average value for
FDR control. When the dependence is strong, the performance of
wuFDP is as good as or even better than FDR control as shown in
Figure 3.

3.2 Simulations for marker dependence
The above simulations demonstrate that the uFDP and the
wuFDP approaches can control the probability of Pr(FDP≥
a specified value) at a specified level. In addition, the wuFDP
control has a better power than the uFDP control. We next consider
the dependence among markers.

We simulate marker genotype data for 100 F2 offsprings from
intercross experiments using R package qtl (Broman et al., 2003).
For 100 independent genes, 50 of them are differentially expressed.
Two scenarios are considered.
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Fig. 3. ROC curves for FDR, uFDP and wuFDP controls. The differential
signal β =0.4. Two hundred non-differentially expressed gene are correlated
with correlation 0.7. z1−α is 1.65 to control Pr(V/R≥uFDP) and
Pr(

∑
wivi/

∑
wiri ≥wuFDP) less than or equal to 0.05. Triangle symbol

line is for wuFDP control, cross symbol line is for uFDP control and circle
symbol line is for FDR.

1. Ten markers are on 10 different chromosomes. For marker 1 on
chromosome 1, 50 genes are differentially expressed according
to the genotypes of marker 1.

2. Compared with scenario 1, we add additional nine markers
on chromosome 1. Thus, 10 markers are equally spaced on
chromosome 1 with 1 cM distance. Another nine markers are
on chromosome 2–10. Marker 1 is associated with 50 genes.

For scenario 2, markers on chromosome 1 are tightly linked.
Therefore, any marker called significant on chromosome 1 is a
true positive. Otherwise it is a false positive. Table 3 summarizes
the average true positives and false positives for 1000 simulations.
Compared with scenario 1, many more true positives are identified
in scenario 2. However, these additional true discoveries are
purely due to the linkage disequilibrium and they cannot provide
more information about the association between gene and marker.
On the other hand, we include many more false positives
in scenario 2. According to the definition of FDR: FDR=

E(false positives)
false positives+true positives = E(

∑
I(|T 0

i |≥t))∑
I(|Ti|≥t) , given a test statistic

threshold t, the increased number of true positives will make the
FDR smaller. Correspondingly, a smaller threshold t will be chosen
for a particular FDR level (e.g. 0.1). Thus, an arbitrary small
threshold t can be chosen to control FDR at a specific level by
adding more markers around the casual marker. The small threshold
t will result in more false positives (40.6 versus 7.4). According to
the definition of uFDP, the increased number of true positives will
make the denominator of uFDP bigger and the uFDP will be smaller
correspondingly. More false positives are included for scenario 2
(22.2 versus 3.1). But compared to FDR control, uFDP control is
a more stringent approach and the number of false positives are
smaller (22.2 versus 40.6). For wuFDP, smaller weights will be

Table 3. A comparison of FDR, uFDP and wuFDP controls when markers
are dependent

Scenario FDR:
TP

uFDP:
TP

wuFDP:
TP

FDR:
FP

uFDP:
FP

wuFDP:
FP

1 49.2 48.3 48.4 7.4 3.1 3.5
2 488.7 480.3 452 40.6 22.2 6.9

The average true positives (TP) and false positives (FP) are calculated based on 1000
simulations. The differential signal β = 0.5. The threshold for FDR, uFDP and wuFDP
is 0.1. z1−α is 1.65. For wuFDP control, if one hypothesis is rejected, we count it as 1
when we calculate the TP or the FP.

assigned to those highly correlated true positives. It penalizes the
effect of additional markers and the denominator of wuFDP changes
little. Correspondingly, the false positive number changes little
(6.9 versus 3.5). Note that the correlation between two hypotheses
under the null consists of two parts: the correlation between
expression-level residuals and the correlation between markers (see
Section 2.3). If the markers are close to each other, the correlation
between hypotheses will be high. If two genes are associated with
the same tested marker, the correlation between hypotheses may
not necessarily be high because we use the correlation between
expression residuals instead of expression levels themselves.

3.3 Real data analysis
We use a human eQTL dataset to demonstrate the usefulness
of our proposed methods. Stranger et al. (2007) used Illumina’s
Sentrix Human-6 Expression BeadChips to measure gene expression
in B-lymphocyte cells of CEPH Utah individuals. In total, we
consider 60 unrelated individuals. There are four replicates for each
individual. In the original paper, the raw datasets were background
corrected and quantile normalized across replicates of a single
individual followed by a median normalization across different
individuals. We downloaded the normalized data from the Sanger
Institute website (ftp://ftp.sanger.ac.uk/pub/genevar/). We chose the
1000 most variable probes among the total of 47 293 probes for
further analysis after excluding probes with extreme outliers. These
individuals are the subjects in the HapMap project (Consortium,
2003). Genotypes of 20 281 autosomal SNPs which are in the 5′ UTR
region or 3′ UTR region and have minor allele frequency ≥0.1 were
downloaded from the HapMap website (http://www.hapmap.org/).
UTR is an important region for gene transcription regulation.
Therefore, we prioritize these SNPs. The genotype is coded as
0, 1 or 2 for homozygous rare, heterozygous and homozygous
common alleles. Gene expression and marker genotype data were
standardized to have mean 0 and sample variance 1/(n−1).

As we know, markers far away on the same chromosome or on
different chromosomes are in linkage equilibrium in a homogeneous
population, as is the case for the samples considered here. Therefore,∑n

k=1xmkxm′k is very close to 0 for such markers. As a result,
the variance–covariance matrix of v′

is can be simplified as a block
diagonal matrix with each block i corresponding to hypotheses
between those 1000 genes and marker i and its neighboring markers
which are within 10 Mb region of marker i. FDR, uFDP and
wuFDP procedures as mentioned before were applied to perform
the analysis.
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Table 4. Gene–marker pairs identified by wuFDP or FDR but not uFDP

Probe Gene Marker P-val Cis/Trans

GI_21328454−S HIST2H2AA rs3761026 1.2×10−7 trans
GI_34147330−S C20orf22 rs1046073 1.3×10−7 cis
GI_34147330−S C20orf22 rs761025 1.3×10−7 cis
GI_34147330−S C20orf22 rs6050626 1.4×10−7 cis
GI_34147330−S C20orf22 rs12428 1.4×10−7 cis
GI_13259530−A SMN2 rs2523454 1.4×10−7 trans
GI_11095446−S HLA-DQA2 rs482194 1.6×10−7 cis

GI_11321616−S DPYSL4 rs7096307 2.1×10−7 cis
GI_42661257−S MGC19764 rs1055636 2.8×10−7 cis
GI_38683865−S RNASET2 rs11787880 3.0×10−7 trans
GI_4504212−S GUCY1A3 rs999917 3.1×10−7 trans
GI_27484056−S LOC284120 rs17199242 3.2×10−7 trans
GI_27484056−S LOC284120 rs17199249 3.2×10−7 trans
GI_27484056−S LOC284120 rs6705406 3.2×10−7 trans
GI_27484056−S LOC284120 rs7600694 3.2×10−7 trans
GI_5803140−S RBPMS rs16843614 4.1×10−7 trans
GI_5803140−S RBPMS rs16843618 4.1×10−7 trans
GI_16753224−S RPL14 rs14306 4.3×10−7 trans
GI_16753224−S RPL14 rs7198524 4.3×10−7 trans
GI_16753224−S RPL14 rs4783941 4.3×10−7 trans
GI_29029571−I CD86 rs377298 4.6×10−7 trans
GI_42657060−S LOC401118 rs3131283 4.6×10−7 trans

The first seven gene–marker pairs were identified by wuFDP and FDR but not identified
by uFDP control. The next 15 gene–marker pairs were identified by FDR but not
identified by wuFDP and uFDP controls. If the distance between gene probe and marker
is <1 Mb, the gene–marker pair is called cis-regulation pair. Otherwise, the pair is
called trans-regulation pair. Note that another 74 significant gene–marker pairs can be
identified by all of the three methods. They are listed in Supplementary Table 1.

Using wuFDP 0.1 as a cutoff and at significance level
0.01 (z1−α = 2.33), there are 81 significant gene–marker pairs
corresponding to 29 genes and 79 markers. Using uFDP control, we
can identify 74 eQTLs corresponding to 27 genes and 73 markers.
Using FDR = 0.1 as a cutoff, 96 eQTLs corresponding to 36 genes
and 94 markers can be identified. As we mentioned in Section 2.3,
the FDR approach is Storey’s approach (Storey and Tibshirani, 2003)
with π̂0 =1.

The 74 significant gene–marker pairs resulting from uFDP control
can be identified by all of the three methods: uFDP, wuFDP and FDR
(see Supplementary Table 1). If the distance between the middle
point of gene probe and marker is <1 Mb, we call this pair as
cis-regulation pair. Otherwise, we call the pair as trans-regulation
pair. Among the 74 pairs, 57 pairs are cis-regulation pairs. It was
reported that signal of cis-regulation eQTL is more abundant and
more stable than distal and trans-regulation eQTL across statistical
methodologies (Stranger et al., 2005). Previous studies also found
a significant proportion of cis-regulation eQTL pairs (Schadt et al.,
2003). Table 4 lists the gene–marker pairs identified by wuFDP and
FDR but not identified by uFDP control and the gene–marker pairs
identified by FDR but not identified by wuFDP and uFDP controls.
Compared with uFDP control, wuFDP control identified seven more
eQTL pairs with five of them being cis-regulation pairs. Compared
with FDR control, wuFDP control missed 15 eQTL pairs with only
two of them being cis-regulation pairs.

The number of pairs identified depends on the threshold used.
Using wuFDP or uFDP 0.05 as a cutoff and at significance level 0.05

(z1−α = 1.65), there are 72 or 65 eQTL pairs. Using FDR = 0.05 as
a cutoff, 81 eQTLs pairs can be identified.

4 DISCUSSION
False discovery control is widely used in genomics and proteomics
studies involving large-scale hypothesis tests. Most of the
approaches assume independence among genes. However, the
dependence among hypotheses may lead to misleading interpretation
of FDP. In this article, we proposed a method that not only considers
the correlation effect in multiple comparison adjustment, but also
utilizes such correlations among hypotheses to improve the power
of identifying eQTL. We treat different hypotheses differently
according to their correlations with other hypotheses. The effective
size of each hypothesis for false discovery control is reflected
in its weight. If the dataset shows non-trivial dependence among
hypotheses such as in Supplementary Figure 1, we recommend
to use the wuFDP control. Otherwise, either the wuFDP or uFDP
control can be used since they perform almost the same (as shown
in Supplementary Figure 3).

We note that weighted analysis has been proposed in the literature
in multiple comparisons. Roeder et al. (2006) proposed to assign
different weights to P-values for association tests between markers
and complex diseases. The weights are predefined and based on
prior information such as results from linkage analysis. If the
linkage study is informative, which means we choose the correct
weights, the weighted FDR procedure for the association study will
improve power significantly. On the contrary, the power loss is small
if the linkage study is uninformative. However, their weights do
not address the dependence problem. Cheverud (2001) proposed
a simple correction for multiple comparisons in interval mapping.
Hypothesis tests are not independent if makers are in linkage
disequilibrium. The effective number of independent tests for these
tests is used in Bonferroni correction. The effective number is
measured by the variance of eigenvalues derived from the observed
marker correlation matrix.

In this article, instead of only focusing on marker correlations,
we also consider gene correlations. Weights based on the variance–
covariance matrix of false discovery number V are considered
when we perform multiple comparison adjustment. Genes (or
markers) which have lower correlations with other genes (or
markers) are assigned with larger weights. On the contrary, genes
(or markers) which have high correlations with others are penalized
by assigning smaller weights. Through these approaches, we can
improve statistical power. More importantly, by assigning smaller
weights to markers highly correlated with each other, we can handle
the situation where many true positives actually come from the same
signal source. The markers are declared significant only because they
are in linkage disequilibrium with the causal marker. The augmented
true positive number will lead to a smaller test statistic threshold for
a predefined FDR level. It will include much more false discoveries.
However, wuFDP control can penalize markers highly correlated
with each other and the weighted number of true positives can
represent the number of true signal sources. Therefore, the wuFDP
approach can better control false positives.

uFDP and wuFDP controls can be easily applied to other types
of data analysis, such as identifying differentially expressed genes
across different conditions which sometimes can be treated as
expression biomarkers for diseases. Besides the large-scale gene
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expression data, now it is feasible to do high-throughput and high-
quality genotyping (e.g. the Affymetrix 500k array set covers about
500k SNPs and costs about $250 per sample). How to handle this
large amount of data computationally is still a significant issue. In
this article, we choose a computationally feasible weighting scheme.
However, the optimality properties for those weights still need to be
studied. And eQTL mapping only provides us the directed genetic
interaction links from markers to genes. The detailed transcriptional
regulatory path needs to be recovered in combination with other
types of data.
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