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Abstract In this paper, we consider the single-index measurement error model with
mismeasured covariates in the nonparametric part. To solve the problem, we develop
a simulation-extrapolation (SIMEX) algorithm based on the local linear smoother
and the estimating equation. For the proposed SIMEX estimation, it is not needed to
assume the distribution of the unobserved covariate. We transform the boundary of a
unit ball in R

p to the interior of a unit ball in R
p−1 by using the constraint ‖β‖ = 1.

The proposed SIMEX estimator of the index parameter is shown to be asymptotically
normal under some regularity conditions. We also derive the asymptotic bias and
variance of the estimator of the unknown link function. Finally, the performance of
the proposed method is examined by simulation studies and is illustrated by a real data
example.
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1 Introduction

One major problem in fitting multivariate nonparametric regression models is the
“curse of dimensionality.” To overcome the problem, the single-index model has
played an important role in the studies. In this paper, we consider the single-index
model of the form

Y = g
(
βTX

)
+ ε, (1.1)

where Y is the response variable, X is a p×1 covariate vector, g(·) is an unknown link
function, β = (β1, . . . , βp)

T is an unknown index parameter, and ε is a random error
with E(ε|X) = 0 almost surely. We further assume the Euclidean norm ‖β‖ = 1 for
the identifiability purpose.Model (1.1) reduces the covariate vector into an indexwhich
is a linear combination of covariates, and hence avoids the “curse of dimensionality.”

Estimation for the index parameter and the unknown link function has attracted
much attention. Duan and Li (1991) developed the sliced inverse regression method.
Härdle and Tsybakov (1993) proposed the average derivativemethod to obtain a root-n
consistent estimator of the index vector β. Carroll et al. (1997) used the local linear
method to estimate the unknown parameters and the unknown link function for gener-
alized partially linear single-index models. Naik and Tsai (2000) discussed the partial
least-squares estimator for single-indexmodels. Xue and Zhu (2006) and Zhu and Xue
(2006) proposed the bias-corrected empirical likelihoodmethod to construct the confi-
dence intervals or regions of the parameters of interest. Liang et al. (2010) studied the
semiparametrically efficient profile least-squares estimators of regression coefficients
for partially linear single-index models. Cui et al. (2011) introduced the estimating
functionmethod to study the single-indexmodels. Pang andXue (2012) andYang et al.
(2014) investigated the single-index random effects models with longitudinal data. Li
et al. (2014) constructed the simultaneous confidence bands for the nonparametric
link function in single-index models. Li et al. (2015) proposed a penalized procedure
combined with the bias-corrected GEE estimator and bias-correct QIF estimator.

The above studies have assumed that covariates can be directly observed. However,
the measurement error models arise frequently in practice and are attracting attentions
from medical and statistical research. For example, covariates such as the blood pres-
sure (Carroll et al. 2006) and the CD4 count (Lin and Carroll 2000; Liang 2009) are
often subject to measurement error. If one ignores these measurement errors, the esti-
mators and inference may be biased. Hence, we are interested in estimating the index
parameter β and the unknown link function g(·) in model (1.1) when the covariate
vector X is measured with error. We assume an additive measurement error model as

W = X +U, (1.2)

whereW is the observed surrogate,U follows N (0, �u) and is independent of (X,Y ).
When U is zero, there is no measurement error. For simplicity, we consider only the
case where the measurement error covariance matrix �u is known. Otherwise, �u

need to be first estimated, e.g., by the replication experiments method in Carroll et al.
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SIMEX estimation for single-index model with covariate… 139

(2006). We refer to the models characterized by (1.1) and (1.2) as the single-index
measurement error model.

To eliminate the effects ofmeasurement error, Cook andStefanski (1994) developed
the SIMEX method to correct the estimates in the presence of additive measure-
ment error. Carroll et al. (1996) further investigated the asymptotic distribution of the
SIMEX estimator. Since then, the SIMEX method has become a standard tool for
correcting the biases induced by measurement error in covariates for many complex
models. Carroll et al. (1999) and Delaigle and Hall (2008) applied the SIMEX tech-
nique to local polynomial nonparametric regression and spline-based regression. Liang
and Ren (2005) applied the SIMEX technique to the generalized partially linear mod-
els with the linear covariate being measured with additive error. Apanasovich et al.
(2009) derived the limiting distribution of SIMEX in semiparameric measurement
error models and gave computable asymptotically correct standard error estimates.

Note that the aforementioned SIMEX methods may not be able to handle the mul-
tivariate nonparametric measurement error regression models owing to the “curse of
dimensionality.” In view of this, Liang andWang (2005) considered the partially linear
single-index measurement error models with the linear part containing the measure-
ment error, where they applied the correction for attenuation approach to obtain the
efficient estimators of the parameters of interest. Their method, however, is not appli-
cable for the occurrence with measurement errors in the nonparametric part. This
motivates us to develop a new SIMEX method to solve this problem. Specifically,
we combine the SIMEX method, the local linear approximation method, and the esti-
mating equation to handle the single-index measurement error model. Our method
has several desirable features. First, our proposed method can deal with multivariate
nonparametric measurement error regression and avoids “curse of dimensionality” by
introducing the index parameter. Second, we use the SIMEX technique to construct
the unbiased estimation and reduce the bias of the estimator and do not assume the
distribution of the unobservable X . Third, to transfer the restricted estimating equation
with the constraint ‖β‖ = 1 to the unrestricted estimating equation, we regard the con-
straint ‖β‖ = 1 as a piece of prior information and adopt the “delete-one-component”
method.

The remainder of the paper is organized as follows. In Sect. 2, we develop the
SIMEX algorithm to obtain the estimators of the index parameter and the unknown
link function and investigate their asymptotic properties. In Sect. 3, we present and
compare the results from simulation studies and also apply the proposed method to a
real data example for illustration. Some concluding remarks are given in Sect. 4, and
the proofs of the main results are given in the Appendix.

2 Main results

2.1 Methodology

To conduct the unbiased estimation for β in the presence of covariate measurement
error, Cook and Stefanski (1994) introduced the SIMEX algorithm. The SIMEX algo-
rithm consists of the simulation step, the estimation step, and extrapolation steps. It
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aims to add additional variability to the observed W in order to establish the trend
between the measurement error induced bias and the variance of induced measure-
ment error and then extrapolate this trend back to the case without measurement error
(Carroll et al. 2006). In this section, we use the SIMEX algorithm, the local linear
smoother and the estimating equation to estimate β and g(·). First, we estimate g(·)
as a function of β by using the local linear smoother. We then estimate the parametric
part based on the estimating equation. The proposed algorithm is described as follows.

(I) Simulation step
For each i = 1, . . . , n, we generate a sequence of variables

Wis(λ) = Wi + (λ�u)
1/2Uis, s = 1, . . . ,S,

where Uis ∼ N (0, Ip), Ip is a p × p identity matrix, S is a given integer, λ ≥ 0 and
λ ∈ � = {λ1, λ2, . . . , λM } is the grid of λ in the extrapolation step. Here λ controls
how much additional independent measurement error is added to the original W data.
Simulation evidence suggests that the extrapolantation should be fitted for λ in a range
of [0, λM ] with 1 ≤ λM ≤ 2 (see Carroll et al. 2006).

(II) Estimation step Suppose that g(·) has a continuous second derivative. For t in a
small neighborhood of t0, g(t) can be approximated as g(t) ≈ g(t0)+g′(t0)(t− t0) ≡
a + b(t − t0). With the simulated Wis(λ), we first estimate g(t0) as a function of β

by a local linear smoother, denoted by ĝ(β, λ; t0), in Step 1. We then propose a new
estimator of β(λ) in Steps 2 and 3, denoted by β̂(λ). The specific procedure is as
follows.

Step 1 For each fixed t0 and β, ĝ(β, λ; t0) and ĝ′(β, λ; t0) are estimated by minimizing

n∑
i=1

{
Yi − a − b[βTWis(λ) − t0]

}2
Kh(β

TWis(λ) − t0), (2.1)

with respect to a and b, where Kh(·) = h−1K (·/h), K (·) is a kernel function with
the bandwidth h. Let â and b̂ be the solutions to problem (2.1). Then, ĝ(β, λ; t0) = â
and ĝ′(β, λ; t0) = b̂. Let

Mni (β, λ; t0) = Uni (β, λ; t0)
/ n∑

j=1

Unj (β, λ; t0),

M̃ni (β, λ; t0) = Ũni (β, λ; t0)
/ n∑

j=1

Unj (β, λ; t0),

where Uni (β, λ; t0) = Kh(β
TWis(λ) − t0){Sn,2(β, λ; t0) − [βTWis(λ) − t0]Sn,1

(β, λ; t0)}, Ũni (β, λ; t0) = Kh(β
TWis(λ) − t0){[βTWis(λ) − t]Sn,0(β, λ; t0) −

Sn,1(β, λ; t0)}, and Sn,l(β, λ; t0) = 1

n

∑n
i=1(β

TWis(λ) − t0)l Kh(β
TWis(λ) − t0) for

l = 0, 1, 2. Simple calculation yields
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SIMEX estimation for single-index model with covariate… 141

ĝ(β, λ; t0) =
∑n

i=1
Mni (β, λ; t0)Yi , (2.2)

ĝ′(β, λ; t0) =
n∑

i=1

M̃ni (β, λ; t0)Yi . (2.3)

Chang et al. (2010) showed that the convergence rate of the estimator of g′(t) is
slower than that of g(t) if the same bandwidth is used. Because of this, we have
suggested another bandwidth h1 to control the variability in the estimator of g′(t). We
use h1 to replace h in ĝ′(β, λ; t0) and write it as ĝ′

h1
(β, λ; t0).

Step 2 To estimate β, we use the “delete-one-component” method in Zhu and Xue
(2006) to transform the boundary of a unit ball in R

p to the interior of a unit ball
in R

p−1. Let β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)
T be a (p − 1)-dimensional vector

deleting the r th component βr .Without loss of generality, we assume there is a positive
component βr ; otherwise, we may consider βr = −(1 − ‖β(r)‖2)1/2. Let

β = (β1, . . . , βr−1, (1 − ‖β(r)‖2)1/2, βr+1, . . . , βp)
T.

Note that β(r) satisfies the constraint ‖β(r)‖ < 1. We conclude that β is infinitely dif-
ferentiable in a neighborhood of β(r) and the Jacobianmatrix is Jβ(r) = (γ1, . . . , γp)

T,
where γ j (1 ≤ j ≤ p, j 
= r) is a (p − 1)-dimensional vector with the sth compo-

nent being 1, and γr = −(1 − ‖β(r)‖2)− 1
2 β(r). Given the estimators ĝ(β, λ; t0) and

ĝ′
h1

(β, λ; t0) in (2.2) and (2.3), respectively, an estimator β̂
(r)
s (λ) of β(r) is obtained

by solving the following equation:

Qns(β
(r), λ) = 1

n

n∑
i=1

η̂is(β
(r), λ) = 0, (2.4)

where

η̂is(β
(r), λ) =

[
Yi − ĝ

(
β, λ;βTWis(λ)

)]
ĝ′
h1

(
β, λ;βTWis(λ)

)
JT
β(r)Wis(λ),

βTWis(λ) = β(r)T W (r)
is (λ) +

(
1 − ‖β(r)‖2

)1/2
Wis,r (λ),

W (r)
is (λ) = (

Wis,1(λ), . . . ,Wis,(r−1)(λ),Wis,(r+1)(λ), . . . ,Wis,p(λ)
)T

.

Next, we can obtain an estimator of β, say β̂s(λ), by implementing the Fisher’s method
of scoring version of the Newton–Raphson algorithm to solve estimating Eq. (2.4).
We summarize the iterative algorithm in what follows.

(1) Choose the initial values for β, denoted by β̃s(λ), where s = 1, . . . ,S.
(2) Compute

β̂∗
s (λ) = β̃s(λ) + J

β̃
(r)
s
B−1
ns (β̃(r)

s , λ)Qns(β̃
(r)
s , λ),

where Bns(β
(r), λ) = 1

n

∑n
i=1 J

T
β(r)Wis(λ)ĝ′2

h1

(
β, λ;βTWis(λ)

)
WT

is(λ)Jβ(r) .

123



142 Y. Yang et al.

(3) Update β̃s(λ) with β̃s(λ) = β̂∗
s (λ)/‖β̂∗

s (λ)‖.
(4) Repeat Step (2) and Step (3) until convergence.
In the iterative algorithm, the initial values of β are obtained by fitting a linear

model with norm 1.
Similar to Cui et al. (2011), we discuss the solution of the estimating equation.

In fact, the solution of the estimating equation Qns(β
(r), λ) is just the least-squares

estimator of β(r). The least-squares objective function is defined by

G(β(r), λ) =
n∑

i=1

{
Yi − ĝ

(
β, λ;βTWis(λ)

)}2
.

The minimum of the objective function G(β(r), λ) with respect to β(r) is the solution
of the estimating equation Qns(β

(r), λ) because the estimating equation Qns(β
(r), λ)

is the gradient vector of G(β(r), λ). Note that {‖β(r)‖ < 1} is an open and connected
subset of R

p−1. By the regularity condition (C2), we known that the least-squares
objective function G(β(r), λ) is twice continuously differentiable on {‖β(r)‖ < 1}
such that the global minimum of G(β(r), λ) can be achieved at some points. By some
simple calculations, we have

1

n

∂2G(β(r), λ)

∂β(r)β(r)T
= −∂Qns(β

(r), λ)

∂β(r)
= A(β(λ), λ) + op(1),

where A(β(λ), λ) is a positive definite matrix for λ ∈ � defined in condition (C6).

Note that the Hessian matrix
1

n

∂2G(β(r), λ)

∂β(r)β(r)T
is positive definite for all values of β(r)

and λ ∈ �. Hence, estimating Eq. (2.4) has a unique solution.
Step 3 With the estimated values β̂s(λ) over s = 1, . . . ,S, we average them and

obtain the final estimate of β as

β̂(λ) = 1

S

S∑
s=1

β̂s(λ).

(III) Extrapolation step For the extrapolant function, we consider the widely used
quadratic function G(λ,�) = Γ1 + Γ2λ + Γ3λ

2 with � = (Γ1, Γ2, Γ3)
T (Lin and

Carroll 2000; Liang and Ren 2005). We fit a regression model of {β̂(λ), λ ∈ �} on
{λ ∈ �} based on G(λ,�), and denote �̂ as the estimated value of �. The SIMEX
estimator of β is then defined as β̂SIMEX = G(−1, �̂). When λ shrinks to 0, the
SIMEX estimator reduces to the naive estimator, β̂Naive = G(0, �̂), that neglects the
measurement error with a direct replacement of X by W .

The SIMEX estimator, ĝSIMEX(t0), is obtained in the same way. β in Step 1 of the
estimation step is replaced by β̂SIMEX, and the estimator ĝs(λ; t0) is obtained with the
bandwidth h2. ĝs(λ; t0) over s = 1, . . . ,S is averaged; then, ĝ(λ; t0) is obtained by
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SIMEX estimation for single-index model with covariate… 143

ĝ(λ; t0) = 1

S

S∑
s=1

ĝs(λ; t0).

The extrapolation step results in Â, which minimizes
∑

λ∈�{ĝ(λ; t0)−G(λ; A)}2 with
respect to A. The SIMEX estimator of ĝSIMEX(t0) is given by

ĝSIMEX(t0) = G(−1, Â).

2.2 Asymptotic properties

To investigate the asymptotic properties of the estimators for the index parameter and
the link function, we first present some regularity conditions.

(C1) The density function, f (t), of βTX is bounded away from zero. It also satisfies
the Lipschitz condition of order 1 on T = {t = βTx : x ∈ A}, where A is the
bounded support set of X .

(C2) g(·) has a continuous second derivative on T .
(C3) The kernel K (·) is a bounded and symmetric density function with a bounded

support satisfying the Lipschitz condition of order 1 and
∫ ∞
−∞ u2K (u)du 
= 0.

(C4) sup
x

E(ε4|X = x) < ∞.

(C5) nh2/(log n)2 → ∞, nh4 log n → 0, nhh31/(log n)2 → ∞, and lim sup
n→∞

nh51 <

∞.
(C6) A(β(λ), λ) is a positive definite matrix for λ ∈ �, where

A(β(λ), λ) = E
{[

g′(λ;βT(λ)Wis(λ)
)]2

JT
β(r)(λ)

W̃is(λ)W̃T
is(λ)Jβ(r)(λ)

}

with W̃is(λ) = Wis(λ) − E[Wis(λ)|βT(λ)Wis(λ)].
(C7) The extrapolant function is theoretically exact.

Condition (C1) ensures that the density function of βTX is positive. Condition (C2)
is the standard condition in smoothness. Condition (C3) is the common assumption
for the second-order kernels. Condition (C4) is a necessary condition for deriving
the asymptotic normality for the proposed estimator. Condition (C5) is commonly
used in nonparametric estimation (Pang and Xue 2012). Note that the range of band-
width h does not contain the optimal bandwidth O(n−1/5), undersmoothing is applied
to eliminate the bias. Finally, condition (C6) ensures that there is asymptotic vari-
ance for the estimator β̂SIMEX, and condition (C7) is a common assumption for the
SIMEX method (see Liang and Ren (2005)). Liang and Ren (2005) had pointed
out the exact extrapolant function is known only in some special cases, and the
quadratic or rational extrapolant for certain estimators is exact with normal mea-
surement error.

To derive the theoretical results, we introduce some new definitions and nota-
tions. For the given � = {λ1, . . . , λM }, let β̂(�) be the vector of estimators
(β̂(λ1), . . . , β̂(λM )), denoted by vec{β̂(λ), λ ∈ �}. Let also � = (Γ T

1 , . . . , Γ T
q )T,
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where Γ j is the parameter vector estimated in the extrapolation step for the j th
component of β̂(λ) for j = 1, . . . , q. We define G(�,�) = vec{G(λm, Γ j ), j =
1, . . . , q,m = 1, . . . , M}, Res(�) = β̂(�) − G(�,�), sT(�) = {∂/∂(�)T}Res(�),
D(�) = s(�)sT(�),

ηiS(β(λ), λ) = 1

S

S∑
s=1

[
Yi − g

(
λ;βT(λ)Wis(λ)

)]

g′(λ;βT(λ)Wis(λ)
)
JT
β(r)(λ)

W̃is(λ),

�iS
{
β(�),�

}
= vec{ηiS(β(λ), λ), λ ∈ �},

J
{
β(�),�

}
= diag{Jβ(r)(λ), λ ∈ �},

A11

{
β(�),�

}
= diag{A(β(λ), λ), λ ∈ �}

and

� = J
{
β(�),�

}
A−1

11

{
β(�),�

}
C11

{
β(�),�

}

{
A−1

11

{
β(�),�

}}T
J T

{
β(�),�

}

with

C11

{
β(�),�

}
= cov

[
�iS

{
β(�),�

}]
.

Theorem 1 Suppose that the regularity conditions (C1)–(C7) hold. Then, as n → ∞,
we have

√
n(β̂SIMEX − β)

L−→ N {0,G�(−1,�)�(�){G�(−1,�)}T},

where
L−→ denotes the convergence in distribution, G�(λ,�) = {∂/∂(�)T}G(λ,�),

�(�) = D−1(�)s(�)�sT(�)D−1(�).

Theorem 1 indicates that β̂SIMEX is a root-n consistent estimator. Its asymptotic
distribution is similar to that of the parametric estimator of β without measurement
error, whereas the asymptotic covariance matrix of the resulting estimator is more
complicated.

To apply Theorem 1 to construct the confidence interval of β, we give the con-
sistent estimator of the asymptotic covariance matrix by the sandwich method.

Take Ĉ11(·) to be the sample covariance matrix of the terms �̂iS
{
β̂(�),�

}
and

Â11(·) = diag{Âm(·)} for m = 1, . . . , M , where
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̂̃Wis(λ) = Wis(λ) −
n∑

i=1

Mni

(
β̂(λ), λ; β̂T(λ)Wis(λ)

)
Wis(λ),

η̂iS(β̂(λ), λ) = 1

S

S∑
s=1

[
Yi − ĝ

(
λ; β̂T(λ)Wis(λ)

)]

ĝ′(λ; β̂T(λ)Wis(λ)
)
JT
β̂(r)(λ)

̂̃Wis(λ),

�̂iS
{
β̂(�),�

}
= vec{η̂iS(β̂(λ), λ), λ ∈ �},

Âm(·) = 1

nS

n∑
i=1

S∑
s=1

[
ĝ′(λm; β̂T(λm)Wis(λm)

)]2

JT
β̂(r)(λm )

̂̃Wis(λm) ̂̃WT
is(λm)J

β̂(r)(λm )
.

The estimator of the asymptotic covariance matrix of β̂SIMEX is defined as

G�(−1, �̂)�̂(�̂){G�(−1, �̂)}T,

where

D̂(�̂) = s(�̂)sT(�̂),

�̂(�̂) = D̂−1(�̂)s(�̂)�̂sT(�̂)D̂−1(�̂),

�̂ = Ĵ (·)Â−1
11 (·)Ĉ11(·)

{
Â−1

11 (·)
}T

Ĵ T(·)

with Ĵ (·) = diag{J
β̂(r)(λ)

, λ ∈ �}.
Let f0(·) be the density function of βTW , μl = ∫

t l K (t)dt and νl = ∫
Kl(t)dt

for l = 1, 2. Define

γ (λ, A) = {∂/∂(A)}G(λ, A),

C(�, A) = γ T(−1, A)
{ ∑

λ∈�

γ (λ, A)γ T(λ, A)
}−1

,

and D = γ (0, A)γ T(0, A).

Theorem 2 Suppose that the regularity conditions (C1)–(C7) hold, and assume that
nh52 = O(1). Then, as n → ∞ and S → ∞, the SIMEX estimator ĝSIMEX(t0) is
asymptotically equivalent to an estimator whose bias and variance are given, respec-
tively, by

C(�, A)
∑
λ∈�

1

2
h22μ2g

′′(λ; t0)γ (λ, A)
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146 Y. Yang et al.

and

[nh2 f0(t0)]−1ν2var
(
Y |βTW = t0

)
C(�, A)DCT(�, A),

where g(λ; t0) = E(Y |βTWs(λ) = t0).

Theorem 2 implies that the β̂SIMEX does not affect the estimator of ĝSIMEX(t0)
because β̂SIMEX is root-n consistent. The result can also be found in other measure-
ment error contexts. For example, both Horowitz and Markatou (1996) and Horrace
and Parmeter (2011) have found that the estimation of β in a parametric regression
model does not impact density deconvolution of the error term. As pointed out in
Carroll et al. (1999), the variance of ĝSIMEX(t0) is asymptotically the same as if
the measurement error was ignored, but multiplied by a factor, C(�, A)DCT(�, A),
which is independent of the regression function.

ApplyingTheorem2, the pointwise confidence intervals of g(t0) can be constructed,
but we need to estimate the asymptotic bias and covariance of ĝSIMEX(t0). The bias
of ĝSIMEX(t0) can be given by

b̂ias
(
ĝSIMEX(t0)

)
= C(�, Â)

1

S

S∑
s=1

∑
λ∈�

1

2
h22μ2 ĝ

′′
s (λ; t0)γ (λ, Â),

where ĝ′′
s (λ; t0) is obtained by using the local cubic fit with an appropriate pilot

bandwidth in estimation step. It is optimal for estimating g′′
s (λ; t0) by choosing h∗ =

O(n−1/7), and it can be chosen by the residual squares criterion ( Fan and Gijbels
(1996)). If the bandwidth nh52 → 0, the bias of ĝSIMEX(t0) is negligible. The variance
of ĝSIMEX(t0) is n−1 times the sample variance of the terms (see Apanasovich et al.
(2009))

C(�, Â)
∑
λ∈�

S−1
S∑
s=1

[
Yi − ĝ(λ; β̂SIMEXWis(λ))

]
Kh2

(
β̂SIMEXWis(λ) − t0

)

(nS)−1
n∑

r=1

S∑
s=1

Kh2

(
β̂SIMEXWis(λ) − t0

) γ (λ, Â).

3 Numerical studies

3.1 Simulation study

In this section, we evaluate the finite sample performance of the proposed method via
simulation studies. Consider the following model:

{
Yi = g(βTXi ) + εi ,

Wi = Xi +Ui , i = 1, . . . , n,
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where β = (β1, β2)
T = (

√
3/3,

√
6/3)T, Xi is a two-dimensional vector with inde-

pendent N (0, 1) components, the error εi is generated from N (0, 0.22), Yi is generated
according to themodel,Ui is generated from N (0, diag(σ 2

u , 0)).We takeσu = 0.2, 0.4,
and 0.6 to represent different levels ofmeasurement errors. Twodifferent link functions
are considered with g1(t) = 3 sin(π t/2) and g2(t) = −2(t − 1)2 + 1. In simulation
study, we compare the naive estimator β̂Naive = (β̂1,Naive, β̂2,Naive)

T that ignore mea-
surement errors and the SIMEX estimator β̂SIMEX = (β̂1,SIMEX, β̂2,SIMEX)T with
quadratic extrapolation function. The sizes of the samples are n = 50, 100, and 150.
For each setting, we simulate 500 times to assess the performance. Using the SIMEX
algorithm, we take λ = 0, 0.2, . . . , 2 and S = 50. We use the Epanechnikov kernel
K (u) = 0.75(1 − u2)+. As pointed out in Liang and Wang (2005), the computa-
tion is quite expensive for the SIMEX method. In view of this, we apply a “rule of
thumb” to select the bandwidths, which is the same in spirit as the selection method
in Apanasovich et al. (2009). Specifically, the bandwidths h, h1, and h2 are taken to
be cn−1/4(log n)−1/2, cn−1/5, and cn−1/5, where c is the standard deviation of β̂T

intW ,
β̂int is obtained by a linear regression of Y on W with norm 1. Tables 1 and 2 report
the biases of β, standard errors (SE), and the coverage probabilities (CP) of 95%
confidence intervals obtained as β̂ ± 1.96SE(β̂).

FromTables 1 and2,we can see that theSIMEXestimators ofβ1 andβ2 have smaller
biases than the naive estimators. The coverage probabilities of the SIMEXmethod are
closer to the nominal level than the naive method. However, the standard errors based
on the SIMEX estimators are larger than those based on the naive estimators. On
the other hand, we can also see that the bias and SE decrease as n increases and the
estimators depend on the measurement error. Overall, the SIMEX method is better
than the naive method in terms of bias reduction and coverage probabilities.

The estimators and standard errors of the link function g(t) with σu = 0.4 are
presented in Figs. 1 and 2, and other cases are similar. From Figs. 1 and 2, we see
that the estimated SIMEX curves are closer to the real link function curves than the
estimated naive curves. The SEof the SIMEXand naive estimators for the link function
are not large, but the SE of the SIMEX estimators are slightly larger than the naive
estimators.

Note that the SE based on the SIMEX estimators are larger than the naive estimators
for the parameter β and the link function g(·). This can be intuitively illustrated with
the linear model. Consider the linear model Y = β0 + βx x + ε, where E(ε) = 0
and Var(ε) = σ 2

ε . If replacing x with W + √
λσeeb, where eb ∼ N (0, 1) and W =

x + e with e have mean 0 and variance σ 2
e , then β̂x (b, λ) has the asymptotic variance

{σ 2
ε /[σ 2

x + (1 + λ)σ 2
e ]}. If λ = −1, then βx (b,−1) is identical to the true parameter,

with the asymptotic variance σ 2
ε /σ 2

x . If λ = 0, βx (b, 0) is just the naive estimator,
with the asymptotic variance σ 2

ε /(σ 2
x + σ 2

e ). Hence, it is easy to see that the SE of the
naive estimators is smaller than that of the SIMEX estimators.

3.2 Real data analysis

We now analyze a data set from the FraminghamHeart Study to illustrate the proposed
method. The data set contains 5 variables with 1615 males, and it has been used by
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Fig. 1 Estimators and standard errors of the link function g1(t) with σu = 0.4 for different sample sizes.
Dot-dashed lines: SIMEX method. Dashed lines: naive method

many authors to illustrate semiparametric partially linearmodels (seeLiang et al. 1999;
Wang et al. 2011). We are interested in whether the age and the serum cholesterol have
an effect on the blood pressure.We use the proposedmodel to analyze the Framingham
data to compare the SIMEX and naive estimators. We use the Epanechnikov kernel
and the bandwidths h = 0.0589 and h1 = h2 = 0.2309. Let Y be their average blood
pressure in a fixed two-year period, W1 and W2 be the standardized variable for the
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Fig. 2 Estimators and standard errors of the link function g2(t) with σu = 0.4 for different sample sizes.
Dot-dashed lines: SIMEX method. Dashed lines: naive method

logarithm of the serum cholesterol level (log(SC)) and age, respectively.W1 is subject
to the measurement error U , and σ 2

u is estimated to be 0.2632 by two replicates
experiments. Figure 3 shows the duplicated serum cholesterol level measurements
from 1615 males. The estimators and standard errors of β and g(·) based on the
SIMEX, and naive methods are reported in Table 3, Figs. 4 and 5.
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Fig. 3 Duplicated serum
cholesterol level measurements
from 1615 males in Framingham
Heart Study
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Table 3 The estimators (SE) of
the parameters obtained by the
SIMEX and naive methods for
the Framingham data

Method log(SC) Age

SIMEX 0.5237(0.051) 0.8502(0.070)

Naive 0.4194(0.047) 0.9099(0.065)
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Fig. 4 Extrapolated point estimators for the Framingham data. The simulated estimates {β̂(λ), λ} are
plotted (dots), and the fitted quadratic function (solid lines) is extrapolated to λ = −1. The extrapolation
results are the SIMEX estimates (squares)

FromTable 3, we can see that the SIMEX estimator of the index coefficient log(SC)

is larger, while the SIMEX estimator of age is smaller than the naive estimators. The
results also show that the serum cholesterol and the age are statistically significant.
Figure 4 shows the trace of the extrapolation step for the SIMEX algorithm. The
estimators of the two index coefficients for the different λ values are plotted. The
SIMEX estimators of index coefficients correspond to −1 on the horizontal axis,
while the naive estimators correspond to 0 on the horizontal axis. Figure 5 shows
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Fig. 5 a The link function estimators for the Framingham; b the pointwise standard errors of the link
function for the Framingham data. Dot-dashed lines: SIMEX method. Dashed lines: naive method

that the estimators, and standard errors of g(·) are obtained by the SIMEX method
and the naive method. The patterns of the two curves are similar. From Table 3 and
Fig. 5, we find that the standard errors of the SIMEX method are larger than the
naive method for the index coefficients and the link function. Table 3 and Fig. 5 also
show that the age and the serum cholesterol have a positive association with the blood
pressure. As expected, when the measurement error is taken into account, we find a
somewhat stronger positive association between the serum cholesterol and the blood
pressure. Liang et al. (1999) analyzed the relationship among the blood pressure, the
age, and the logarithm of serum cholesterol level by the partially linear errors-in-
variables model, where the logarithm of serum cholesterol level was the covariate of
the corresponding parameter and the age was a scalar covariate of the corresponding
unknown function. When they accounted for the measurement error, the estimator of
the parameter was larger than that of ignoring the measurement error. It implied that
the blood pressure and the serum cholesterol have a stronger positive correlation when
considering the measurement error. The estimator of the unknown function shows that
the age is positively associated with the blood pressure. Our findings basically agree
with those in Liang et al. (1999). In addition, Liang et al. (1999) suggested that the
serum cholesterol level and the blood pressure are a linear relationship. Figure 6 shows
the scatter plot of the serum cholesterol level and the blood pressure. It may be more
reasonable to use a nonlinear relationship between the serum cholesterol level and the
blood pressure from Fig. 6. Hence, we analyze this data set by the single-index model.
Figure 5a shows that the blood pressure increases as the index β̂TX increases.

4 Discussion

We propose the SIMEX estimation of the index parameter and the unknown link
function for single-index models with covariate measurement error. The asymptotic
normality of the estimator of the index parameter and the asymptotic bias and variance
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Fig. 6 Scatter plot of the serum
cholesterol level and the blood
pressure from 1615 males in
Framingham Heart Study
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of the estimator of the unknown link function are derived under some regularity con-
ditions. The proposed index parameter estimator is root-n consistent, which is similar
to that of the estimator of a parameter without measurement error, but the asymptotic
covariance has a complicated form. The asymptotic variance of the estimator of the
unknown link function is of order (nh2)−1. Our simulation studies indicate that the
proposed method works well in practice.

However, it also exists some problemswhich areworth discussing. Firstly, to reduce
the calculation time, we use the DPI bandwidth selection method in Ruppert et al.
(1995). The bandwidth selector has not been considered. Carroll et al. (1999) sug-
gested to use the empirical bias bandwidth (EBB) selection, and Staudenmayer and
Ruppert (2004) developed another way to estimate the bandwidth. With the similar
idea of Staudenmayer and Ruppert (2004), our future work will improve the proposed
SIMEX estimation using better bandwidth selection. Secondly, in the estimation step,
we transfer the restricted estimating equation with the constraint ‖β‖ = 1 to unre-
stricted estimating Eq. (2.4). Chang et al. (2010) pointed out that the unrestricted
estimator of the index parameter is asymptotically more efficient than the restricted
estimator. We only provide the asymptotic properties of β̂SIMEX in Theorem 1. The
semiparametric efficiency of β̂SIMEX is, however, another important issue and deserves
for future analysis. Thirdly, we assume that U is a normal variable (see Carroll et al.
1999; Liang and Ren 2005; Apanasovich et al. 2009), which is a super smooth mea-
surement error. Fan and Truong (1993) studied the effect of errors in variables in
nonparametric regression estimation by deconvolution and kernel estimators. They
showed that the nonparametric regression with errors in variables depended strongly
on the smoothness of error distribution. It is meaningful to discuss how to estimate the
index parameter and the link function according to whether the measurement error is
ordinary smooth or super smooth.

The proposed method can be extended to some other models, including partially
linear single-index models with measurement error in nonparametric components and
generalized single-index models with covariate measurement error. It can also be

123



SIMEX estimation for single-index model with covariate… 155

extended to single-index measurement error models with cluster data by assuming
working independence in the estimating equations. Future study is needed to investi-
gate how to take into account the within-cluster correlation for cluster data to improve
the efficiency of the estimator of the index parameter for single-index measurement
error models with cluster data.
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Appendix

The following notation will be used in the proofs of the lemmas and theorems. Set β0
be true value, Bn = {β : ‖β‖ = 1, ‖β − β0‖ ≤ c1n−1/2} for some positive constant
c1. Let fλ(·) be the density function of βTWs(λ). Note that if λ = 0, f0(·) is the
density function of βTW .

Lemma 1 Let (ζ1, η1), . . . , (ζn, ηn) be i.i.d. random vectors, where ηi ’s are scalar
random variables. Assume further that E |η1|r < ∞, and supx

∫ |y|r f (x, y)dy < ∞,
where f (·, ·) denotes the joint density of (ζ1, η1). Let K (·) be a bounded positive
function with a bounded support, satisfying a Lipschitz condition. Then

sup
x

∣∣∣1
n

n∑
i=1

{Kh(ζi − x)ηi − E[Kh(ζi − x)ηi ]}
∣∣∣ = Op

({
log(1/h)

nh

}1/2
)

,

provided that n2ε−1h → ∞ for some ε < 1 − r−1.

Proof This follows immediately from the result that was obtained by Mack and Sil-
verman (1982). ��
Lemma 2 Suppose that conditions (C1)–(C4) hold. Then

sup
t∈T ,β∈Bn

∣∣ĝ(β, λ; t) − g(λ; t)∣∣ = Op
(
(nh/ log n)−1/2 + h2

)

and

sup
t∈T ,β∈Bn

∣∣ĝ′(β, λ; t) − g′(λ; t)∣∣ = Op
(
(nh3/ log n)−1/2 + h

)
.

Proof By the theory of least squares, we have

(ĝ(β, λ; t), hĝ′(β, λ; t))T = S−1
n (β, λ; t)ξn(β, λ; t), (A.1)
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where

Sn(β, λ; t) =
(

Sn,0(β, λ; t) h−1Sn,1(β, λ; t)
h−1Sn,1(β, λ; t) h−2Sn,2(β, λ; t)

)

and

ξn(β, λ; t) = (ξn,0(β, λ; t)), ξn,1(β, λ; t))T

with

ξn,l(β, λ; t) = 1

n

n∑
i=1

Yi

(
βTWis(λ) − t

h

)l

Kh(β
TWis(λ) − t)

for l = 0, 1, 2. A simple calculation yields, for l = 0, 1, 2, 3,

E[h−1Sn,l(β, λ; t)] = fλ(t)μl + O(h). (A.2)

By Lemma 1, we have

h−1Sn,l(β, λ; t) − E[h−1Sn,l(β, λ; t)] = Op

({
log(1/h)

nh

}1/2
)

,

which, combining with (A.2), proves that, for t ∈ T and β ∈ Bn ,

h−1Sn,l(β, λ; t) = fλ(t)μl + Op

({
log(1/h)

nh

}1/2

+ h

)
, l = 0, 1, 2, 3.

(A.3)

It can be obtained immediately that

Sn(β, λ; t) = S(λ; t) + Op

({
log(1/h)

nh

}1/2

+ h

)
,

where S(λ; t) = fλ(t) ⊗ diag(1, μ2), and ⊗ is the Kronecker product.
Denote

ξ∗
n,l(β, λ; t) = 1

n

n∑
i=1

[Yi − g(λ;βTWis(λ))]
(

βTWis(λ) − t

h

)l

Kh(β
TWis(λ) − t)

and

ξ∗
n (β, λ; t) =

(
ξ∗
n,0(β, λ; t), ξ∗

n,1(β, λ; t)
)T

.
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Note that

E(ξ∗
n (β, λ; t)) = O(n−1/2). (A.4)

By Lemma 1 and (A.4), it can be shown that

ξ∗
n (β, λ; t) = Op

({
log(1/h)

nh

}1/2

+ n−1/2

)
. (A.5)

By applying Taylor’s expansion for g(λ;βTWis(λ)) at t , we can prove that

ξn,0(β, λ; t) − ξ∗
n,0(β, λ; t) = Sn,0(β, λ; t)g(λ; t) + Sn,1(β, λ; t)hg′(λ; t)

+ 1

2
h2Sn,2(β, λ; t)g′′(λ; t) + op{h2 + (nh)−1/2}

and

ξn,1(β, λ; t) − ξ∗
n,1(β, λ; t) = Sn,1(β, λ; t)g(λ; t) + Sn,2(β, λ; t)hg′(λ; t)

+ 1

2
h2Sn,3(β, λ; t)g′′(λ; t) + op{h2 + (nh)−1/2}

uniformly hold in t ∈ T and β ∈ Bn . Hence

ξn(β, λ; t) − ξ∗
n (β, λ; t) = Sn(β, λ; t)

(
g(λ; t)
hg′(λ; t)

)
+ 1

2
h2

(
Sn,2(β, λ; t)g′′(λ; t)
Sn,3(β, λ; t)g′′(λ; t)

)

+ op{h2 + (nh)−1/2}.

Combining this with (A.1)–(A.3) yields

(
ĝ(λ; t) − g(λ; t)

h{ĝ′(λ; t) − g′(λ; t)}
)

= S−1(λ; t)ξ∗
n ((β, λ; t))

+ 1

2
h2

(
μ2g′′(λ; t)
μ3
μ2

g′′(λ; t)
)

+ op(h
2 + (nh)−1/2). (A.6)

This together with (A.5) proves Lemma 2. ��

Proof of Theorem 1 Assume β(λ) is the true value based on the model E[Y |βT(λ)

Ws(λ)] = g(βT(λ)Ws(λ)). Using Lemma 2 and the similar method in Theorem 1 of
Chang et al. (2010), we have

√
n
(
β̂s(λ) − β(λ)

)
= √

nJβ(r)(λ)A
−1
n (β(λ), λ)Bn(β(λ), λ) + op(1),
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where

An(β(λ), λ) = 1

n

n∑
i=1

[
g′(λ;βT(λ)Wis(λ)

)]2
JT
β(r)(λ)

W̃is(λ)W̃T
is(λ)Jβ(r)(λ)

and

Bn(β(λ), λ) = 1

n

n∑
i=1

εis(λ)g′(λ;βT(λ)Wis(λ)
)
JT
β(r)(λ)

W̃is(λ)

with εis(λ) = Yi − g
(
λ;βT(λ)Wis(λ)

)
.

Extrapolation step deduces that

√
n
(
β̂(λ) − β(λ)

)
= Jβ(r)(λ)A−1(β(λ), λ)n− 1

2

n∑
i=1

ηiS(β(λ), λ) + op(1),

(A.7)

where ηiS(β(λ), λ) = 1

S
∑S

s=1
εis(λ)g′(λ;βT(λ)Wis(λ)

)
JT
β(r)(λ)

W̃is(λ).

Then, using (A.7), the limit distribution of
√
n
(
β̂(�) − β(�)

)
is multivariate

normal distribution with mean zero and covariance �.
�̂ in the extrapolation step is obtained by minimizing {Res(�)}{Res(�)}T. The

estimating equation for �̂ is 0 = s(�)Res(�), where sT(�) = {∂/∂(�)T}Res(�).
Then, we have

√
n(�̂ − �)

L−→ N {0, �(�)}.

Because β̂SIMEX = G(−1, �̂), the SIMEX estimator is asymptotically normal with
asymptotic variance

G�(−1,�)�(�){G�(−1,�)}T.

��
Proof of Theorem 2 Note that ‖β̂SIMEX − β‖ = Op(n−1/2), similar to the proof of
(A.6), we have

ĝs(λ; t0) − g(λ; t0) − 1

2
h22μ2g

′′(λ; t0)

= [ fλ(t0)]−1 1

n

n∑
i=1

{
[Yi − g(λ;βTWis(λ))]Kh2(β

TWis(λ) − t0)
}

+ op{h22 + (nh2)
−1/2}. (A.8)
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Using (A.8) and the decomposition of Carroll et al. (1996), since S is fixed and

ĝ(λ; t0) = S−1
S∑
s=1

ĝs(λ; t0), we have

ĝ(λ; t0) − g(λ; t0) − 1

2
h22μ2g

′′(λ; t0)

= [ fλ(t0)]−1 1

n

n∑
i=1

⎧⎨
⎩S−1

S∑
s=1

[Yi − g(λ;βTWis(λ))]Kh2(β
TWis(λ) − t0)

⎫⎬
⎭

+ op{h22 + (nh2)
−1/2}. (A.9)

If λ = 0, (A.9) becomes

ĝ(0; t0) − g(0; t0) − 1

2
h22μ2g

′′(0; t0)

= [n f0(t0)]−1 1

n

n∑
i=1

[Yi − g(0;βTWi )]Kh2(β
TWi − t0) + op{h22 + (nh2)

−1/2},

which has mean zero and the following asymptotic variance

[nh2 f0(t0)]−1var
(
Y |βTW = t0

)
ν2. (A.10)

For λ > 0, using the similar argument of (A8) in Carroll et al. (1999), we have

var(ĝ(λ; t0)) = O
{
(nh2S)−1

}
+ O

(
n−1

)
,

while for λ = 0,

var(ĝ(λ; t0)) = O
{
(nh2)

−1
}

.

Then, for B sufficiently large, the variability of ĝ(λ; ·) is negligible forλ > 0 compared
to λ = 0. Hence, in what follows, we will ignore this variability by treating B as if it
was equal to infinity.

We obtain Â by solving the following equation

0 =
∑
λ∈�

{ĝ(λ; t0) − G(λ, A)}γ (λ, A). (A.11)

Applying a Taylor expansion to the right side of (A.11), we obtain

0 =
∑
λ∈�

{ĝ(λ; t0) − G(λ, A)}γ (λ, A) −
∑
λ∈�

γ (λ, A)γ T(λ, A)(Â − A),
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Hence,

Â − A =
{∑

λ∈�

γ (λ, A)γ T(λ, A)

}−1 ∑
λ∈�

{ĝ(λ; t0) − G(λ, A)}γ (λ, A). (A.12)

The right side of (A.12) has approximate mean

{∑
λ∈�

γ (λ, A)γ T(λ, A)

}−1 ∑
λ∈�

1

2
h22μ2g

′′(λ; t0)γ (λ, A),

and its approximate variance is given by

[nh2 f0(t0)]−1ν2var(Y |βTW = t0)

{∑
λ∈�

γ (λ, A)γ T(λ, A)

}−1

D

{∑
λ∈�

γ (λ, A)γ T(λ, A)

}−1

.

Because ĝSIMEX(t0) = G(−1, Â), its asymptotic bias is

C(�, A)
∑
λ∈�

1

2
h22μ2g

′′(λ; t0)γ (λ, A),

and its asymptotic variance is

[nh2 f0(t0)]−1ν2var
(
Y |βTW = t0

)
C(�, A)DCT(�, A).

This completes the proof. ��

References

Apanasovich, T.V., Carroll, R.J., Maity, A.: Simex and standard error estimation in semiparametric mea-
surement error models. Electron. J. Stat. 3, 318–348 (2009)

Carroll, R.J., Lombard, F., Küchenhoff, H., Stefanski, L.A.: Asymptotics for the SIMEX estimator in
structural measurement error models. J. Am. Stat. Assoc. 91, 242–250 (1996)

Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P.: Generalized partially linear single-index models. J. Am. Stat.
Assoc. 92, 477–489 (1997)

Carroll, R.J., Maca, J., Ruppert, D.: Nonparametric regression in the presence of measurement error.
Biometrika 86, 541–554 (1999)

Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Model, 2nd
edn. Chapman & Hall, London (2006)

Chang, Z.Q., Xue, L.G., Zhu, L.X.: On an asymptotically more efficient estimation of the single-index
model. J. Multivar. Anal. 101, 1898–1901 (2010)

Cook, J., Stefanski, L.A.: Simulation-extrapolation method in parametric measurement error models. J.
Am. Stat. Assoc. 89, 1314–1328 (1994)

123



SIMEX estimation for single-index model with covariate… 161

Cui, X., Härdle, W., Zhu, L.X.: The EFM approach for single-index models. Ann. Stat. 39, 1658–1688
(2011)

Delaigle, A., Hall, P.: Using SIMEX for smoothing parameter choice in errors-in-variables problems. J.
Am. Stat. Assoc. 130, 280–287 (2008)

Duan, N., Li, K.C.: Slicing regression: a link free regression method. Ann. Stat. 19, 505–530 (1991)
Fan, J., Gijbels, I.: Local Polynomial Modeling and Its Applications. Chapman & Hall, London (1996)
Fan, J., Truong, Y.K.: Nonparametric regression with errors in variables. Ann. Stat. 21, 1900–1925 (1993)
Härdle, W., Tsybakov, A.B.: How sensitive are average derivatives. J. Econom. 58, 31–48 (1993)
Horowitz, J.L., Markatou, M.: Semiparametric estimation of regression models for panel data. Rev. Econ.

Stud. 63, 145–168 (1996)
Horrace, W.C., Parmeter, C.F.: Semiparametric deconvolution with unknown error variance. J. Product.

Anal. 35, 129–141 (2011)
Li, G.R., Peng, H., Dong, K., Tong, T.J.: Simultaneous confidence bands and hypothesis testing in single-

index models. Stat. Sin. 24, 937–955 (2014)
Li, G.R., Lai, P., Lian, H.: Variable selection and estimation for partially linear single-index models with

longitudinal data. Stat. Comput. 25, 579–593 (2015)
Liang, H.: Generalized partially linear mixed-effects models incorporating mismeasured covariates. Ann.

Inst. Stat. Math. 61, 27–46 (2009)
Liang, H., Ren, H.: Generalized partially linear measurement error models. J. Comput. Graph. Stat. 14,

237–250 (2005)
Liang, H., Wang, N.: Partially linear single-index measurement error models. Stat. Sin. 15, 99–116 (2005)
Liang, H., Härdle, W., Carroll, R.J.: Estimation in a semiparametric partially linear errors-in-variables

model. Ann. Stat. 27, 1519–1535 (1999)
Liang, H., Liu, X., Li, R.Z., Tsai, C.L.: Estimation and testing for partially linear single-index models. Ann.

Stat. 38, 3811–3836 (2010)
Lin, X., Carroll, R.J.: Nonparametric function estimation for clustered data when the predictor is measured

without/with error. J. Am. Stat. Assoc. 95, 520–534 (2000)
Mack, Y.P., Silverman, B.W.: Weak and strong uniform consistency of kernel regression estimates. Z.

Wahrsch. verw. Gebiete 61, 405–415 (1982)
Naik, P., Tsai, C.L.: Partial least squares estimator for single-index models. J. R. Stat. Soc. Series B 62,

763–771 (2000)
Pang, Z., Xue, L.G.: Estimation for the single-index models with random effects. Comput. Stat. Data Anal.

56, 1837–1853 (2012)
Ruppert, D., Sheather, S.J., Wand, M.P.: An effective bandwidth selector for local least squares regression.

J. Am. Stat. Assoc. 90, 1257–1270 (1995)
Staudenmayer, J., Ruppert, D.: Local polynomial regression and simulation-extrapolation. J. R. Stat. Soc.

Series B 66, 17–30 (2004)
Wang, L., Brown, L.D., Cai, T.T.: A difference based approach to the semiparametric partial linear model.

Electron. J. Stat. 5, 619–641 (2011)
Xue, L.G., Zhu, L.X.: Empirical likelihood for single-indexmodels. J.Multivar. Anal. 97, 1295–1312 (2006)
Yang, S.G., Xue, L.G., Li, G.R.: Simultaneous confidence bands for single-index random effects models

with longitudinal data. Stat. Probab. Lett. 85, 6–14 (2014)
Zhu, L.X., Xue, L.G.: Empirical likelihood confidence regions in a partially linear single-index model. J.

R. Stat. Soc. Series B 68, 549–570 (2006)

123


	SIMEX estimation for single-index model  with covariate measurement error
	Abstract
	1 Introduction
	2 Main results
	2.1 Methodology
	2.2 Asymptotic properties

	3 Numerical studies
	3.1 Simulation study
	3.2 Real data analysis

	4 Discussion
	Acknowledgements
	Appendix
	References




